Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
jack1982te
Un'azienda deve pianificare la produzione di un bene per i prossimi 3 mesi. La domanda dei clienti, da soddisfare interamente, è nota a priori per ciascun mese. Inoltre, la massima quantità che può essere prodotta in ciascun mese (capacità produttiva) e i costi unitari di produzione sono riassunti nella seguente tabella: MESE 1MESE 2MESE 3150013001600Domanda (unità di ...

liegi
Salve, vi pongo un quesito: Si acquista un'obbligazione zero-coupon trentennale. Alla scadenza si può riscuotere 100.000€. Si ipotizzi di vendere l'obbligazione dopo 17 anni. Determinare: 1) prezzo acquisto obbligazione con struttura dei tassi piatta e i=5% 2) prezzo vendita obbligazione con struttura dei tassi piatta e i=8% 3) holding period return su base annuale Svolgimento: 1) In pratica calcolo il valore attuale di un flusso quindi faccio il valore attuale di una rendita posticipata ...

Davidemas1
Salve a tutti.Volevo chiedervi;se ho un condensatore collegato con un generatore di forza elettromotrice e riempito con un dielettrico e ad un certo punto mi viene detto di calcolare il lavoro di estrazione del dielettrico la relazione che lega il lavoro di estrazione,l energia nel condesatore e il lavoro del generatore é $ Delta U_(cond)=L_(estr)+L_(g e n) $ ? Nel caso questa relazione sia vera,vale anche per un conduttore? Grazie in anticipo per la risposta

olgia
un'urna è composta da gettoni rossi e neri in proporzione 0,15 e 0,85. ogni gettone rosso reca impresso il numero 1 e i neri il numero 2. si consideri l'esperimento casuale A="estrazione con reimmissione di 3 gettoni dall'urna". a) già risolto b) si costruisca la variabile casuale X="somma dei valori impressi sui gettoni estratti" e si calcoli la probabilità che X assuma valori maggiori o uguali a 5 c) si calcoli la probabilità di ottenere al più 2 gettoni rossi nelle tre estrazioni
2
17 set 2014, 16:13

MB891
Salve, mi trovo di fronte a questo esercizio e alle seguenti soluzioni possibili: Siano $finC^2(RR^2)$, $g:RR^2->RR$, $g(x,y)=f(x,3y^2)$. Allora a. $g(x,y)=f(0,0)+D_1f(0,0)x+D_11f(0,0)x^2/2+3D_22f(0,0)y^2+o(x^2+y^2) (x,y)->(0,0)$ b. $g(x,y)=f(0,0)+D_1f(0,0)x+D_11f(0,0)x^2/2+3D_2f(0,0)y^2+o(x^2+y^2) (x,y)->(0,0)$ c. $g(x,y)=f(0,0)+D_1f(0,0)x+D_11f(0,0)x^2/2+3D_2f(0,0)y+o(x^2+y^2) (x,y)->(0,0)$ d. nessuna delle precedenti Io applico la formula (sempre direttamente in 0,0): $g(x,y)=g(0,0)+D_1g(0,0)x+D_2g(0,0)y+1/2[D_11g(0,0)x^2+2D_12g(0,0)xy+D_22g(0,0)y^2]+o(x^2+y^2)$ Con: $D_1g(x,3y^2)=D_1f(x,3y^2)$ quindi $D_1g(0,0)=D_1f(0,0)$ $D_2g(x,3y^2)=6yD_2f(x,3y^2)$ quindi $D_1g(0,0)=0$ $D_11g(x,3y^2)=D_11f(x,3y^2)$ quindi $D_1g(0,0)=D_11f(0,0)$ $D_12g(x,3y^2)=6yD_12f(x,3y^2)$ quindi ...
1
17 set 2014, 23:23

alessandro.roma.1654
ragazzi ho un esame a breve e non ho capito bene questo criterio che serve per dimostrare la convergenza di una serie ad esempio io lo sto usando per la dimostrazione della serie armonica ma leggendo l ununciato piu volte non riesco ad immaginarmi quello che significa cioè vi posto il criterio presa una serie $\sum_(k=0)^infty a_k$ è convergente se solo se per ogni $\epsilon>0$ esiste un $n_\epsilon$ che appartiene hai numeri naturali tale che per ogni $n>n_\epsilon$ e per ...

DrNoob83
ciao ragazzi, scusate mi sono bloccato su una gnubbata enorme, ma proprio non mi sblocco su come risolvere equazioni come queste x^3 - 4x^2 + x +6 = 0 3x^3-5x^2+7x+3=0 come risolvo? immagino per scomposizione, ma non riesco a raccogliere bene...thx
5
16 set 2014, 22:43

JulesVerne
Mi fate questo problema nel modo in cui si fa con le proporzioni e normalmente? Grazie AB= 2/3 Ac AB+AC=20 cm Incognite A; 2p Entro domani, per favore! E' un triangolo rettangolo
2
17 set 2014, 16:25

Mistict
Vi prego è l'unico che non riesco a fare .... In un triangolo ABC, isoscele su base AB, sapendo che l'altezza relativa ad AB è 4cm in meno della lunghezza dei due lati obbliqui e che i lati congruenti sono i 5/8 di AB, determina la lunghezza dei 3 lati
1
17 set 2014, 17:39

marco128
Ciao, $F(x)= int_0^x f(x)dx$ è continua dove è definita? La risposta dovrebbe essere no perchè una funzione potrebbe avere qualche punto in cui non esiste all'interno di un intervallo dato, giusto? $F(x)= int_0^x f(x)dx$ è derivabile dove è definita? Questa sinceramente non la so.. Un ultimo dubbio... Sia $D=(-oo;0)(0;+oo)$ e$ f:D->D$ una funzione derivabile in $D$. Allora $f'(x)>0$ per ogni $x in \mathbb{R}$ allora $f$ è cresciente in $\mathbb{R}$ ? Si
2
17 set 2014, 19:17

Valeliaa
Problema trova l area di un triangola che ha come lati 5 6 e 12
1
17 set 2014, 20:30

kika_17
Ciao a tutti, sto cercando di risolvere questo esercizio, però mi sono bloccata ... qualcuno può aiutarmi? Grazie Calcolare, giustificando il procedimento seguito, il seguente limite: $lim_(n->infty) int_{3}^{pi} (x^3-n)/(x^2+n) dx$ ________ Per risolverlo devo capire se posso fare la formula di passaggio al limite sotto il segno di integrale e per usarla la successione di funzioni deve convergere uniformemente su $[3,pi]$. Giusto? Allora, poniamo $f_n (x) = (x^3-n)/(n+x^2)$ La successione di funzioni ...
6
17 set 2014, 13:54

Spremiagrumi1
Avendo la metrica di una superficie definita come $ds^2=lambda(u,v)*(du^2+dv^2)$ come trovo la curvatura di Gauss? Io ho provato a trovare le forme fondamentali per poter trovare la curvatura come $K=(eg-f^2)/(EG-F^2)$ in cui e,f,g è la seconda forma fondamentale mentre E,F,G è la prima. Per quanto riguarda la prima, a partire dalla definizione di metrica $ds^2=Edu^2+2Fdu*dv+Gdv^2)$ ho supposto che $E=G=lambda(u,v)$ e $F=0$ però non riesco a trovare la seconda forma. Ho provato a derivare il prodotto scalare ...

tiziano901
Ciao, mi aiutate con questi 3 esercizi? 1- Un pezzo di un sottile foglio di alluminio di massa $ 5*10^-2 kg $ è sospeso per mezzo di un filo in un campo elettrico diretto verticalemte verso l'alto. Se la carica del foglio è di 3 $ muC $ trovare l'intensità del campo che riduce la tensione del filo a zero. 2- Il campo elettrci nell'atmosfera terrestre è E=100 N/C, nella direzione orientata verso il basso. Determinare la carica elettrica sulla Terra. 3- Un guscio sferico ...

dario18
Salve a tutti, ho avuto problemi con la risoluzione di questo sviluppo: $ (z-1)sin(1/(z+1)) $ Il testo dice: determinare lo sviluppo in serie di Laurent di centro z=-1 della seguente funzione. Classificare le singolaritá e indicare la regione di convergenza della serie. Io ho provato a sviluppare il seno in serie di Taylor $ sum_(n = \0) (-1)^n1/((z+1)^(2n+1)(2n+1)!) $ Poi non so come classificare le singolaritá e trovare la regione di convergenza! Grazie
6
17 set 2014, 15:39

icaf
Qualcuno sarebbe in grado di risolvermi questo esercizio in modo particolare la rappresentazione grafica dato che non riesco... grazie mille!!
3
23 set 2014, 18:45

marco128
Ciao, spero che possiate essere i miei salvatori.... ho da proporvi una sfliza di domande, ma non preoccupatevi sono delle scemenze, è per vedere se sono giuste... 1)$e^lnx=x$ Per ogni x appartenente a $R$? No, solo per $x>0$ 2)$\sqrt(x^2 +1)>x$ per ogni $x$? SI 3)Risolvere l'equazione $cos^2(lnx)+sin^2(lnx)=2$ Nessuna soluzione 4) $(sin^2 x)/x^2$ è continua? Si 5)$f(x)$ è continua allora $f'(x)$ è continua? Si 6)La ...
13
17 set 2014, 00:14

Spremiagrumi1
Salve, ho un problema che non che mi sembra logicamente impossibile, forse sbaglio qualcosa, ve lo scrivo: Si considerino in $R^3$ i punti $p=(sqrt(2)/2,0,sqrt(2)/2)$ $q=(0,sqrt(2)/2,sqrt(2)/2)$ Si spieghi perché per essi passano un parallelo $alpha$ e una sola circonferenza massima $beta$ della sfera $S_0^2$(1) I punti $p$ e $q$ stanno sulla sfera di raggio 1 centrata nell'origine, sono a 45° con $y=0$ in ...

Anthrax606
L'equazione è la seguente: [math]\frac{2x^{2}+1}{x^{2}-x-20}+6x+2=\frac{6x^{2}-26x-15}{x-5}[/math]. Per il primo membro nessuna difficoltà, ma per quanto riguarda il secondo membro non capisco come devo operare al numeratore della frazione. Il risultato dovrebbe essere [math]7[/math]. Grazie in anticipo a chiunque si appresterà a rispondere. :D
1
17 set 2014, 17:11

NGC5033
Salve a tutti. Ho affrontato qualche giorno fa un esame di Fisica II scritto e tra qualche giorno ho l'orale. Prima dell'orale vorrei chiedere a voi un aiuto su un problema che mi verrà sicuramente chiesto: Ho una carica q al centro di una regione vuota sferica (di raggio R) scavata all'interno di un grande blocco di rame. Il problema chiedeva di calcolare sia campo elettrico che potenziale nei punti: $r = R/2$ $r = R$ $r > R$ Nell'esame, per i primi due casi ho ...