Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Jake150
Salve un esercizio mi chiede di calcolare una base e la dimensione di un sottospazio vettoriale T = {(1, 1, 1),(0, 0, 0),(2, 2, 2)} ⊆ R3 Ma visto che la somma tra il primo e il terzo vettore mi da un vettore che non appartiene a T posso concludere che non si tratti di un sottospazio vettoriale? non essendo linearmente chiuso.
3
16 giu 2018, 13:58

djanthony931
Dato una sistema LTI descritto dalla fdt: $G(s)=\frac{100}{s+500}$ si progetti un controllore a retroazione di uscita, senza cancellare i poli di G(s), tale da garantire: i. errore a regime nullo a fronte di un riferimento a rampa $r(t)=5t*1(t)$ ii. $w_c\geq3$ rad/s iii. $\phi>40$ gradi Impongo $w_c=10$ rad/s. Divido il problema del controllore in due parti: $C_1(s)=\frac{\mu}{s^2}$ $C_2(s)=(1-\taus)$ dove la seconda parte mi serve per soddisfare la specifica sul margine di fase ...
3
9 giu 2018, 19:39

saretta:)115
Ho molti dubbi sul dominio di questo integrale triplo svolto a lezione oggi, $D={(x,y,z)\in RR^3|y>=x^2, y<=2-x, x>=0, z>=0, y<=4-x-z}$ e se ne richiede il volume del dominio di integrazione. Credo proprio di non capire perché integrando per fili, lungo z, prenda come estremi nell'integrale con dz, l'integrale che va per l'appunto da $0$ a $4-x-z$ Il mio problema è dovuto al fatto che $y<=4-x-z$ e $y<=2-x$ e non capisco il motivo per cui prenda $y<=4-x-z$ come superiore e non l'altro ...

gionny98
$ sum_(n=0)^(+∞) ((-1)^n3^n)/(2n+1)x^n $ Se utilizzo il teorema di Cauchy-Hadamard per cui $ lim_(x -> ∞)root(n)(|a_n|) =l $ mi esce 3 quindi $ |x|<3 $ e la serie converge assolutamente. Ora la mia domanda è: Nella prova d'esame ho un esercizio del genere in cui mi dice di studiare una determinata serie di potenze, ma è possibile che la risoluzione è così semplice o c'è qualcos'altro da fare?
1
16 giu 2018, 12:48

ciccio.9511
Salve a tutti ragazzi,stavo studiando il teorema di gauss ed ho capito a grandi linee il suo significato,cioè che il flusso di campo elettrico attraverso una superficie chiusa che racchiude una carica è indipendente dalla forma della superficie.Tuttavia ,ho dei dubbi riguardo la dimostrazione,che vi allego con uno screenshot. http://oi64.tinypic.com/105czrs.jpg Cosa rappresenta il dA? E perchè ad un certo punto diventa 4pi greco *r^2?

gianm1
Buongiorno. Sto cercando di svolgere un esercizio che mi chiede di stabilire se i due gruppi A=(R, +) e B=(R+, *) sono isomorfi. Se non ho capito male devo definire una funzione di dominio A e codominio B. Già vedendo A e B credo che i due gruppi non siano isomorfi, in quanto hanno cardinalità diversa ma vorrei, se possibile, una conferma e magari un metodo che possa essere utilizzato in generale per questa tipologia di esercizio.
3
16 giu 2018, 10:26

AnalisiZero
Ciao, Il mio libro dice riguardo il grafico dell'energia potenziale in funzione di x: "Matematicamente si può verificare che un estremo di U corrisponde ad una posizione di equilibrio stabile o instabile esaminando il segno di $(d^2U)/dx^2$. Un segno positivo dà un equilibrio stabile mentre un segno negativo dà un equilibrio instabile" Secondo me la derivata seconda dice solo com'è la concavità, non dice se la pendenza è positiva o negativa. Per esempio se la derivata seconda nell'estremo ...

cri981
nello spazio$ R_(<=2)[x]$ dei polinomi di grado al più 2, si consideri il sottospazio $W={p(x)in R_<=2[X]: p prime(0)=p prime(1)=p prime prime(0)-p prime(1)=0} $ e sia Z tale che$ R_(<=2)=W o+ Z$ A)dimZ=2 B)dimZ=1 C)dimZ=0 D)dimW=0 E)nessuna delle altre risposte per risolvere l'esercizio pensavo di considerare $p(x)= ax^2+bx+c$ $p prime(x)=2ax+b$ $p prime prime (x)= 2a $ come devo andare avanti? grazie!
15
15 giu 2018, 00:14

Avocaldo
Buonasera, sono alle prese con l'esame di geometria e algebra lineare. Sto tentando di fare un esercizio risolto, di cui pero' non capisco la soluzione. Lavoro e spesso sono fuori citta', non ho contatti ne' con professori ne' con studenti, studio un po' quando riesco. a spizzichi e bocconi. Questo esame mi sembra un ostacolo insormontabile . Qualcuno riuscirebbe a spiegarmi perche' questo esercizio e' stato risolto in questo modo? Si rifa' a qualche teorema della teoria che mi sfugge? ...
2
13 giu 2018, 22:49

Eruannon
Salve, Sto affrontando un esercizio di matematica discreta ma non riesco proprio ad incominciare, sono totalmente bloccato! L'esercizio è questo: Stabilire quante sono le soluzioni di $ x^26 -= 1 mod(35) $ tali che $ 0 <= x < 35 $. Avevo già visto un esercizio simile e ho come il sentore che si possa applicare il piccolo teorema di Fermat o fare dei ragionamenti con la funzione phi di Eulero, ci ho pensato ma non mi vengono idee, sono ore che lo osservo... sarà l'ora tarda

angrigio
Due bici A e B si trovano su una pista rettilinea e B e' avanti rispetto ad A di 90 m. A e B partono contemporaneamente con moto rettilineo uniforme e velocita' Va = 5 m/s e Vb = 3 m/s. Dopo quanti secondi A raggiunge B? Ho impostao le seguenti relazioni A = distanza del punto a ; indico con x B = distanza del punto B da A ; indico con x+90 Dalla definizione di Velocita' $ V=S/t $ Ho scritto : il tempo sia per a che per B e' : $ t =S/v $ quindi il tempo A é = ...
4
15 giu 2018, 10:21

Amedim
Salve, ho dei dubbi riguardo la risoluzione di questo esercizio, dovreste controllare solo il procedimento per favore: Considerati il fascio proprio di piani F(r) avente per asse la retta: r: $ { ( x=1+t ),( y=-1+t ),( z=3-2t ):} $ ed il piano $Pi$ avente rappresentazione cartesiana: $Pi : 3x-5y-z-3=0$ Determinare, se possibile, un piano $ omega_1 in F(r) $ tale che $ omega_1 $ risulti parallelo a $Pi$ Ecco, per risolvere ho portato la retta in forma cartesiana e scritto ...
6
16 dic 2017, 11:26

cri981
come si risolve questo esercizio? grazie in anticipo supposto che per $x in [2,4]$ sia: $ 1 <= f’’ (x) <= 2$, $ f’ (2) =-1$ e $ f(2) =3$ dire se: 1) $ f (3) <= 6 $ 2) $ f (3) <= 3 $ 3) $ f (3) <= 4 $ 4) $ f (4) <= 5 $ 5) nessuna delle precedenti
16
10 mag 2018, 19:17

anto921
Salve, qualcuno sa dirmi perché la funzione di Cantor non è assolutamente continua su un compatto anche se è continua e quindi dovrebbe essere uniformemente continua su un compatto per il teorema di Heine-Borel? Grazie
2
15 giu 2018, 22:02

Frank983
Un mattone di massa $M = 10 kg$ viene spinto contro un piano orizzontale da una forza di modulo pari a $200 N$, e la cui direzione forma un angolo di $60°$ con la verticale. Supponendo che vi sia un coefficiente di attrito, sia statico che dinamico, pari a $0.75$ quanto vale il modulo della reazione vincolare esercitata dal piano? Allora, la componente $y$ di $N$ l'ho calcolata così: $F/2 + Mg = 200N$ , credo e spero sia ...

Lebesgue
Si consideri il problema di Cauchy: $u'=(u-t)/(u+t^2+1)\ , \ u(0)=a$ [con $u$ si sottintende $u(t)$]. 1) Studiare l'esistenza globale nel passato e nel futuro per $a<-1$ Si ha che $u'$ è localmente lipschitziana dove definita, quindi vi sono esistenza ed unicità locali. Sulla retta $u(t)=t$ si ha $u'(t)=0$. La curva $u=-1-t^2$ è quella che causa la morte delle soluzioni. Ora se $a<-1$ vuol dire che le soluzioni sono ...
1
14 giu 2018, 19:10

nico97it
Come da titolo sto avendo difficoltà nel determinare la convergenza delle seguenti serie: $ sum((n!*n^2)/alpha^(n^2)) $ con $ alpha>0 $ e l'indice n che va da 0 a infinito $ sum(2^(n^(alpha^2))/(n!)) $ con $ alpha in R $ e l'indice n che va da 2 a infinito Evidentemente sbaglio l'approccio o mi sfugge qualcosa perchè anche applicando i teoremi non ne vengo a capo.
4
15 giu 2018, 17:30

giowre92
Salve a tutti, mi trovo al cospetto di questa traccia d'esercizio : "Si calcoli la lunghezza della curva di equazione polare $ rho =sin^2(theta) $ $ theta in [-pi, pi] $ Ho proceduto secondo la formula : $ l(gamma) = int_-pi ^pi sqrt(rho^2(theta) + rho '^2 (theta)) d theta $ ottenendo : $ l(gamma) = int _-pi ^pi sqrt ( (sin^4(theta) + 4 sin^2(theta) cos^2 (theta))) d theta $ . Il problema è che arrivato a questo punto sono in vicolo cieco. Ho provato a riscrivere l'integrale come : $ int _-pi ^pi... = int _-pi ^pisqrt ( sin^2(theta) * (sin^2(theta) + 4 cos^2 (theta))) d theta =int_-pi ^pi sqrt ( (sin^2(theta) * (sin^2 (theta) + 4 - 4 * sin^2 (theta))) d theta $ $ = int _-pi ^pi sqrt ( sin ^2 (theta) * ( 4 - 3 * sin^2 (theta))) d theta $ $ = int _-pi ^pi sqrt ( sin ^2 (theta) * ( 4 - 3 * sin^2 (theta))) d theta $. Ho poi provato la ...
1
15 giu 2018, 17:43

IlBacone
Sto provando a risolvere questo esercizio ma non so come partire. So che probabilmente serve usare la formula del potenziale elettrostatico ma non capisco come. Mi dareste una mano? Due cariche fisse, $q_1 = 8 nC$ e $q_2 = 12 nC$, distano fra loro $12 cm$. Che lavoro si deve fare per portare una terza carica $q_3 = 20 nC$ a metà fra $q_1$ e $q_2$ ?

Frank983
Una molla, di lunghezza a riposo $l = 0.2 m$ e costante elastica $2400 N/m$, ha un estremo bloccato contro una parete verticale, mentre l’altro è in contatto con una massa $M = 0.04 kg$ appoggiata su un piano orizzontale. Se tra il piano orizzontale e la massa è presente un attrito $(μs = 0.8 ; μd = 0.2 )$, e la molla viene inizialmente compressa di $s = 5 cm$, quanto vale la velocità della massa dopo che ha percorso $d = 1.5 m$? Io l'ho impostato ...