Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Salve un esercizio mi chiede di calcolare una base e la dimensione di un sottospazio vettoriale
T = {(1, 1, 1),(0, 0, 0),(2, 2, 2)} ⊆ R3
Ma visto che la somma tra il primo e il terzo vettore mi da un vettore che non appartiene a T posso concludere che non si tratti di un sottospazio vettoriale? non essendo linearmente chiuso.
Dato una sistema LTI descritto dalla fdt:
$G(s)=\frac{100}{s+500}$
si progetti un controllore a retroazione di uscita, senza cancellare i poli di G(s), tale da garantire:
i. errore a regime nullo a fronte di un riferimento a rampa $r(t)=5t*1(t)$
ii. $w_c\geq3$ rad/s
iii. $\phi>40$ gradi
Impongo $w_c=10$ rad/s.
Divido il problema del controllore in due parti: $C_1(s)=\frac{\mu}{s^2}$ $C_2(s)=(1-\taus)$ dove la seconda parte mi serve per soddisfare la specifica sul margine di fase ...
Ho molti dubbi sul dominio di questo integrale triplo svolto a lezione oggi,
$D={(x,y,z)\in RR^3|y>=x^2, y<=2-x, x>=0, z>=0, y<=4-x-z}$ e se ne richiede il volume del dominio di integrazione.
Credo proprio di non capire perché integrando per fili, lungo z, prenda come estremi nell'integrale con dz, l'integrale che va per l'appunto da $0$ a $4-x-z$
Il mio problema è dovuto al fatto che $y<=4-x-z$ e $y<=2-x$ e non capisco il motivo per cui prenda $y<=4-x-z$ come superiore e non l'altro ...
$ sum_(n=0)^(+∞) ((-1)^n3^n)/(2n+1)x^n $
Se utilizzo il teorema di Cauchy-Hadamard per cui $ lim_(x -> ∞)root(n)(|a_n|) =l $
mi esce 3 quindi $ |x|<3 $ e la serie converge assolutamente.
Ora la mia domanda è:
Nella prova d'esame ho un esercizio del genere in cui mi dice di studiare una determinata serie di potenze, ma è possibile che la risoluzione è così semplice o c'è qualcos'altro da fare?
Salve a tutti ragazzi,stavo studiando il teorema di gauss ed ho capito a grandi linee il suo significato,cioè che il flusso di campo elettrico attraverso una superficie chiusa che racchiude una carica è indipendente dalla forma della superficie.Tuttavia ,ho dei dubbi riguardo la dimostrazione,che vi allego con uno screenshot.
http://oi64.tinypic.com/105czrs.jpg
Cosa rappresenta il dA? E perchè ad un certo punto diventa 4pi greco *r^2?
Buongiorno. Sto cercando di svolgere un esercizio che mi chiede di stabilire se i due gruppi A=(R, +) e B=(R+, *) sono isomorfi. Se non ho capito male devo definire una funzione di dominio A e codominio B. Già vedendo A e B credo che i due gruppi non siano isomorfi, in quanto hanno cardinalità diversa ma vorrei, se possibile, una conferma e magari un metodo che possa essere utilizzato in generale per questa tipologia di esercizio.
Ciao,
Il mio libro dice riguardo il grafico dell'energia potenziale in funzione di x:
"Matematicamente si può verificare che un estremo di U corrisponde ad una posizione di equilibrio stabile o instabile esaminando il segno di $(d^2U)/dx^2$. Un segno positivo dà un equilibrio stabile mentre un segno negativo dà un equilibrio instabile"
Secondo me la derivata seconda dice solo com'è la concavità, non dice se la pendenza è positiva o negativa.
Per esempio se la derivata seconda nell'estremo ...
nello spazio$ R_(<=2)[x]$ dei polinomi di grado al più 2, si consideri il sottospazio
$W={p(x)in R_<=2[X]: p prime(0)=p prime(1)=p prime prime(0)-p prime(1)=0} $
e sia Z tale che$ R_(<=2)=W o+ Z$
A)dimZ=2
B)dimZ=1
C)dimZ=0
D)dimW=0
E)nessuna delle altre risposte
per risolvere l'esercizio pensavo di considerare
$p(x)= ax^2+bx+c$
$p prime(x)=2ax+b$
$p prime prime (x)= 2a $
come devo andare avanti?
grazie!
Buonasera,
sono alle prese con l'esame di geometria e algebra lineare. Sto tentando di fare un esercizio risolto, di cui pero' non capisco la soluzione. Lavoro e spesso sono fuori citta', non ho contatti ne' con professori ne' con studenti, studio un po' quando riesco. a spizzichi e bocconi. Questo esame mi sembra un ostacolo insormontabile . Qualcuno riuscirebbe a spiegarmi perche' questo esercizio e' stato risolto in questo modo? Si rifa' a qualche teorema della teoria che mi sfugge? ...
Salve,
Sto affrontando un esercizio di matematica discreta ma non riesco proprio ad incominciare, sono totalmente bloccato!
L'esercizio è questo:
Stabilire quante sono le soluzioni di $ x^26 -= 1 mod(35) $ tali che $ 0 <= x < 35 $.
Avevo già visto un esercizio simile e ho come il sentore che si possa applicare il piccolo teorema di Fermat o fare dei ragionamenti con la funzione phi di Eulero, ci ho pensato ma non mi vengono idee, sono ore che lo osservo... sarà l'ora tarda
Due bici A e B si trovano su una pista rettilinea e B e' avanti rispetto ad A di 90 m.
A e B partono contemporaneamente con moto rettilineo uniforme e velocita' Va = 5 m/s e Vb = 3 m/s. Dopo quanti secondi A raggiunge B?
Ho impostao le seguenti relazioni
A = distanza del punto a ; indico con x
B = distanza del punto B da A ; indico con x+90
Dalla definizione di Velocita' $ V=S/t $
Ho scritto : il tempo sia per a che per B e' : $ t =S/v $
quindi il tempo A é = ...
Salve, ho dei dubbi riguardo la risoluzione di questo esercizio, dovreste controllare solo il procedimento per favore:
Considerati il fascio proprio di piani F(r) avente per asse la retta:
r: $ { ( x=1+t ),( y=-1+t ),( z=3-2t ):} $
ed il piano $Pi$ avente rappresentazione cartesiana: $Pi : 3x-5y-z-3=0$
Determinare, se possibile, un piano $ omega_1 in F(r) $ tale che $ omega_1 $ risulti parallelo a $Pi$
Ecco, per risolvere ho portato la retta in forma cartesiana e scritto ...
come si risolve questo esercizio?
grazie in anticipo
supposto che per $x in [2,4]$ sia: $ 1 <= f’’ (x) <= 2$, $ f’ (2) =-1$ e $ f(2) =3$ dire se:
1) $ f (3) <= 6 $
2) $ f (3) <= 3 $
3) $ f (3) <= 4 $
4) $ f (4) <= 5 $
5) nessuna delle precedenti
Salve,
qualcuno sa dirmi perché la funzione di Cantor non è assolutamente continua su un compatto anche se è continua e quindi dovrebbe essere uniformemente continua su un compatto per il teorema di Heine-Borel?
Grazie
Un mattone di massa $M = 10 kg$ viene spinto contro un piano orizzontale da una forza di modulo pari a
$200 N$, e la cui direzione forma un angolo di $60°$ con la verticale. Supponendo che vi sia un coefficiente di
attrito, sia statico che dinamico, pari a $0.75$ quanto vale il modulo della reazione vincolare esercitata dal
piano?
Allora, la componente $y$ di $N$ l'ho calcolata così:
$F/2 + Mg = 200N$ , credo e spero sia ...
Si consideri il problema di Cauchy: $u'=(u-t)/(u+t^2+1)\ , \ u(0)=a$ [con $u$ si sottintende $u(t)$].
1) Studiare l'esistenza globale nel passato e nel futuro per $a<-1$
Si ha che $u'$ è localmente lipschitziana dove definita, quindi vi sono esistenza ed unicità locali.
Sulla retta $u(t)=t$ si ha $u'(t)=0$.
La curva $u=-1-t^2$ è quella che causa la morte delle soluzioni.
Ora se $a<-1$ vuol dire che le soluzioni sono ...
Come da titolo sto avendo difficoltà nel determinare la convergenza delle seguenti serie:
$ sum((n!*n^2)/alpha^(n^2)) $ con $ alpha>0 $ e l'indice n che va da 0 a infinito
$ sum(2^(n^(alpha^2))/(n!)) $ con $ alpha in R $ e l'indice n che va da 2 a infinito
Evidentemente sbaglio l'approccio o mi sfugge qualcosa perchè anche applicando i teoremi non ne vengo a capo.
Salve a tutti, mi trovo al cospetto di questa traccia d'esercizio :
"Si calcoli la lunghezza della curva di equazione polare
$ rho =sin^2(theta) $ $ theta in [-pi, pi] $
Ho proceduto secondo la formula :
$ l(gamma) = int_-pi ^pi sqrt(rho^2(theta) + rho '^2 (theta)) d theta $ ottenendo :
$ l(gamma) = int _-pi ^pi sqrt ( (sin^4(theta) + 4 sin^2(theta) cos^2 (theta))) d theta $ .
Il problema è che arrivato a questo punto sono in vicolo cieco.
Ho provato a riscrivere l'integrale come :
$ int _-pi ^pi... = int _-pi ^pisqrt ( sin^2(theta) * (sin^2(theta) + 4 cos^2 (theta))) d theta =int_-pi ^pi sqrt ( (sin^2(theta) * (sin^2 (theta) + 4 - 4 * sin^2 (theta))) d theta $
$ = int _-pi ^pi sqrt ( sin ^2 (theta) * ( 4 - 3 * sin^2 (theta))) d theta $ $ = int _-pi ^pi sqrt ( sin ^2 (theta) * ( 4 - 3 * sin^2 (theta))) d theta $.
Ho poi provato la ...
Sto provando a risolvere questo esercizio ma non so come partire. So che probabilmente serve usare la formula del potenziale elettrostatico ma non capisco come. Mi dareste una mano?
Due cariche fisse, $q_1 = 8 nC$ e $q_2 = 12 nC$, distano fra loro $12 cm$. Che lavoro si deve fare per portare
una terza carica $q_3 = 20 nC$ a metà fra $q_1$ e $q_2$ ?
Una molla, di lunghezza a riposo $l = 0.2 m$ e costante elastica $2400 N/m$, ha un estremo bloccato contro
una parete verticale, mentre l’altro è in contatto con una massa $M = 0.04 kg$ appoggiata su un piano
orizzontale. Se tra il piano orizzontale e la massa è presente un attrito $(μs = 0.8 ; μd = 0.2 )$, e la molla viene
inizialmente compressa di $s = 5 cm$, quanto vale la velocità della massa dopo che ha percorso $d = 1.5 m$?
Io l'ho impostato ...