Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Studente Anonimo
Se \(G \) è un grafo bipartito e sia \( \Delta(G) \) il grado massimo dei sui vertici, allora \( \Delta(G) \) è uguale al numero minimo di colori necessari, denotato con \(m \) a colorare ciascun arco di \(G \) in modo tale che nessun arco adiacente abbia lo stesso colore. Una direzione è facile infatti se \( m < \Delta(G) \) allora sia \( v \) il vertice corrispondente al grado massimo, abbiamo che da \(v \) escono esattamente \( \Delta(G) \) archi tutti adiacenti, pertanto non possiamo ...
5
Studente Anonimo
6 dic 2019, 16:56

Studente Anonimo
Ciao a tutti Dovrei scrivere una relazione cinematica, ma non ne vengo fuori. La situazione è questa: Date due aste di lunghezza $2R$ vincolate tra loro ad un loro estremo e vincolate al bordo di un disco di raggio $R$, viene chiesto di descrivere la posizione del centro del disco $C$ in funzione dell'angolo $theta$ che ciascuna delle due aste forma con la verticale. Ringrazio chiunque sappia aiutarmi.
10
Studente Anonimo
6 dic 2019, 21:58

frankardius
Buongiorno! Avrei bisogno di una mano con un esercizio di algebra lineare sugli endomorfismi diagonalizzabili. La traccia è la seguente: Sia φ un endomorfismo di uno spazio vettoriale V di dimensione n. Supponiamo che φ abbia n autovalori distinti. Dimostrare che esiste un vettore v ∈ V tale che l’insieme { $ v,varphi (v), varphi ^2 (v),... ,varphi ^(n-1)(v) $ } sia una base di V . Io so che, avendo n autovalori distinti, esiste una base di autovettori, tale che la matrice associata a $ varphi $ rispetto a tale base è ...

Nexus991
Quello che si deve dimostrare è questo: Mia idea: Dimostro per induzione Passo base n=0 Abbiamo la funzione stessa, che è sempre maggiore uguale di 0 Ipotesi induttiva: La sommatoria è maggiore uguale di 0 per ogni n Dimostro che è valida per n+1 Per n+1 la sommatoria si può riscrivere come la somma delle derivate da 0 fino ad n, con l'aggiunta della derivata n+1-esima. Ora questa derivata n+1-esima vale 0 essendo la funzione polinomiale e di grado n, mentre la somma delle ...
14
5 dic 2019, 08:14

dome88
Salve a tutti, sto appena introducendo qualche nozione di superfice in $ R^3$ però ho delle difficoltà a capire la parametrizzazione. una $r(u, v)$ che parametrizza una superfice contenuta in $ A sube R^2$ è scritta in forma vettoriale con l'utilizzo dei versori in questa forma: $ r(u,v) = x(u,v)i + y(u,v)j + z(u,v)k $ Ora per quanto riguardavano le curve mi era abbastanza chiaro il concetto di paramettrizzazione e di come variavano le componenti, però adesso non mi è molto chiaro perché ho ...
15
3 dic 2019, 16:29

Brunosella01
Qualcuno è a conoscenza di come calcolare la radice quadrata di 4,2 alla quinta cifra decimale, utilizzando le serie numeriche? Grazie a chi risponderà

camilla07090
Buonasera a tutti. Oggi scrivo qui perchè ho disperato bisogno di aiuto con questo esercizio, dato che lunedì avrò un esame di algebra e geometria lineare su tale argomento. Il testo è: Dato il sottospazio U = [formule][formule]{(x, y, z, t) ∈ R^4| x = y + z, z = x + t}, trovare U⊥. Scrivere il vettore(1, 0, 0, 0) come somma v1 + v2, dove v1 ∈ U e v2 ∈ U⊥. [Risp.: U ha base (1, 1, 0, −1),(0, −1, 1, 1) e quindi U⊥ = {x + y = t, y = z + t}, v1 =1/5(3, 1, 2, −1), v2 =1/5(2, −1, −2, 1)]. La base ...

cesc097
Buonasera, ho provato a svolgere un esercizio sullo studio di una serie attraverso il criterio della radice (richiesto dall'esercizio), ma purtroppo non riesco a proseguirlo: $ sum((3n)/(5n+1))^(2n-1) $ $ (3n)/(5n+1)>=0 $ $ lim((3n)/(5n+1))^((2n-1)/n)= lim((3n)/(5n+1))^(2)*((3n)/(5n+1))^(-1/n) $ E purtroppo da qui non so più come andare avanti. Qualcuno potrebbe aiutarmi? Grazie in anticipo.
5
10 dic 2019, 13:41

marco2132k
\( \newcommand{\pt}[3]{\Bigl(\begin{smallmatrix}#1\\#2\\#3\end{smallmatrix}\Bigr)} \)Ciao. Trovare tutte le basi di \( \mathbb Q^3 \) contenute in \( E = \left\{\pt{2}{-3}{0},\pt{1}{-2}{1},\pt{1}{1}{0},\pt{0}{-1}{4}\right\}\subset\mathbb Q^3 \), dove \( \mathbb Q^3 \) è un \( \mathbb Q \)-spazio vettoriale. Trovare una base è banale: dato un qualsiasi sottoinsieme finito \( E \) di uno spazio vettoriale, se esso contiene almeno un vettore non nullo \( l_1 \), l'insieme ...

fillippodepaolis94
Ciao, non capisco questo passaggio della dimostrazione. Data $L(u,v)=\int_{a}^{b}\sqrt{u'^2+v'^2}dx \quad \forall u,v\in W_{per}^{1,1}(a,b)$, riparametrizziamo la curva, ponendo $y=\eta(x) = -1 + \frac{2}{L(u,v)}\int_{a}^{x}\sqrt{u'^2+v'^2}dx$. Come ottengo $y$? Grazie
8
10 dic 2019, 10:30

kickbox
In un punto di un solido in equilibrio è assegnato il seguente stato di tensione $[T]=[[0,0,-2],[0,0,3],[-2,3,12]]$ Determinare 1) Se lo stato di tensione è monoassiale, biassiale o triassiale; 2) Tensioni principali e direzioni principali di tensione; 3) Equazioni di eventuali piani scarichi; 4) Tensione tangenziale massima e relativa giacitura; 5) Tensione normale e tensione tangenziale per la giacitura di normale ${n}={-1/sqrt(3),-1/sqrt(3),1/sqrt(3)}$. Sono riuscito a fare i primi 2 punti, mi spiegate come fare gli altri 3? ...
1
7 lug 2016, 17:27

Plepp
Salve ragazzi, vorrei disegnare una spirale ricoperta da un certo numero $N$ di dischetti i cui centri $p_i$ giacciono sulla spirale e sono alla stessa "distanza" l'uno dall'altro; più precisamente vorrei che la lunghezza della porzione di spirale che congiunge $p_i$ e $p_{i+1}$ sia la stessa per ogni $i$. Sono partito parametrizzando la spirale come \[ \rho(\theta)=a\theta,\quad \theta \in [0,2n\pi],\ a>0 \] dove ...
5
9 dic 2019, 21:11

mgrau
"matos":vedo che la disuguaglianza afferma che $(dQ)/(dt)<=0$.i Immagino che tu intenda dire $(dQ)/T$ ...

lino.lino1
Giuro che ancora non ho capito la velocità risultante di 2 auto che si scontrano frontalmente . Si finisce poi, nel discorso, "Facciamo che un auto vada a urtare un muro", poi ci infilano le formule e quindi non ho capito nulla. Allora come da titolo, se due muri si scontrano frontalmente alla stessa velocità , c , vedono raddoppiate la velocità risultante? Cioè subiscono il doppio dei danni di un muro che va a urtare un muro fermo a velocità c?

Pasquale 90
Buongiorno, devo risolvere il seguente sistema $S_F$, dove sono presenti le C.E. della seguente funzione $f(x)=(sqrt(1/2-log_3(tan(x)+2sin(x)))-sqrt(pi^2-4x^2))/(arcsin(sqrt(x^2-x)-|x|))$ \(\displaystyle S_F=\begin{cases} -1 \le \sqrt {(x^2-x)} -|x| \le 1 \\ arcsin(\sqrt{(x^2-x)}-|x|) \ne 0\\ \pi^2-4x^2 \ge 0 \\ x\ne \pi/2 + k\pi, \qquad k \in Z \\ tan(x) + 2sin(x) >0 \\ 1/2-log_3(tan(x)+2sin(x)) \ \ge 0 \end{cases} \) Vi chiedo, devo determinare prima il perido del sistema, visto che sono presenti delle funzioni goniometriche, quindi, una ...

Pasquale 90
Buongiorno, ho la seguente funzione $sqrt((|tanx|-|sinx|)/(x-elog(x))$ impongo le varie c.e. le risolvo, ma quando arrivo a risolvere $x-elog(x) ne 0$ non so affrontarla. C'è quel $e$ che mi suggerisce qualcosa ma non riesco a vedere niente purtroppo, come posso inquadrarla ?

annachiara.cassoli
Ciao a tutti, devo risolvere questo limite. Ho provato a risolverlo con gli Sviluppi di Taylor e con il teorema di De l'Hospital. Il problema è quell' \( x^3lnx \) che con Taylor non si può sviluppare. Ho pensato a sostituire \( lnx= t\rightarrow x=e^t \) ma anche questa strada non mi è sembrata la migliore. Qualcuno ha consigli su come procedere? \( \lim_{x \to 0}\frac{xtan (\frac{x}{2})+ln(1+\sin^2x)}{(1+3x)^\frac{1}{3}-e^x-x^3lnx} \) Grazie a tutti

M.C.D.1
Salve ragazzi stavo cercando di risolvere il seguente esercizio: La prima parte sono riuscito a risolverla senza problemi. Utilizzando la relazione di standardizzazione $z = (x- mu)/ sigma$ e le tabelle stavolta usandole al contrario (ovvero partendo dalla probabilità ho ricavato $z$ e successivamente $x$. Per la seconda parte non ho proprio idea di come procedere invece. avevo pensato di utilizzare la distribuzione della media campionaria (Che dovrebbe essere essa ...
2
9 dic 2019, 23:44

Studente Anonimo
Sia \( f : \mathbb{C} \to \mathbb{C} \) una funzione olomorfa iniettiva. Dimostra che è suriettiva. Avete dei suggerimenti? non so da dove partire.
15
Studente Anonimo
6 dic 2019, 18:33

jakojako
Salve a tutti, sono alle prese con il seguente esercizio e vorrei un parere sulla mia proposta di soluzione: " Al blocco di massa $5kg$ posto sul piano inclinato di un angolo $\theta=37^{\circ}$ della figura in basso è applicata la forza orizzontale $F$ di intensità $50N$. Fra blocco e piano il coefficiente di attrito dinamico è $\mu_{k}=0,30$. Sapendo che la velocità iniziale del blocco è di $4,0m/s$, si calcolino il modulo e la direzione ...