Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
manto51
Qualcuno potrebbe gentilmente spiegarmi perchè la funzione Zeta di Riemann si azzera in corrispondenza degli interi pari negativi ? Ho cercato in rete, ma ho trovato soltanto che vengono chiamati "zeri banali" della funzione e, talvolta, si dice che la cosa è "evidente". Purtroppo a me non appare così "evidente" e, chiedendo scusa della mia incapacità, chiedo aiuto al Forum ... grazie

Derkel
in questo esercizio riesco a calcolare il periodo. per quando riguarda l'altezza, riesco a calcolarla tramite velocità della massa alla base dei piani e formule inverse del moto uniformemente accelerato. Non capisco perchè usando la conservazione dell'energia non esce fuori lo stesso risultato. (base piani) (punto in cui si ferma) Ep1 + Ec1 = Ep2 + Ec2 + Wattrito Ep1 é 0 alla base Ec = mgh1 -mg cotan(30) h1 u Ep2 = mgh2 Ec2 = 0 perché si ferma Wattrito = mg cotan(30) h2 ...

mat.pasc
Vorrei poter gentilmente chiedere una mano sul concetto dionda stazionaria. In particolare il professore studia il caso La mia domanda è: perché non posso usare la funzione coseno? Che sappiamo essere una soluzione di d'Alabert? Mi sono risposto che procedendo con la somma di incidente e riflessa avrei: $y=2y_mcos(kx)cos(omegat)$ però avremmo un problema sulla condizione al contorno: $cosk0=0$ che non sarebbe valida, cioè nel punto in cui la corda è legata (x=0) non soddisfa (il caso coseno) ...

mat.pasc
Ho un dubbio piuttosto banale sulle onde incoerenti. Il testo tratta un piccolo approfondimento di quello che sarà argomenti di ottica, tuttavia non ho ben capito un passaggio: Riassumendo dice che quando gli atomi del filamento di una lampadina in tungsteno si diseccitano lo fanno in modo casuale e due onde immaginate propagarsi lungo z avranno (poiché il campo E giace sul piano x e y) funzioni ad es: $E_y=A_2cos(omegat+d)$ ed $E_x=A_1cos(omegat)$ nelle incoerenti d è diverso volta pervolta poiché ...

Aelle1994
Salve, qualcuno mi potrebbe aiutare con questa disequazione goniometrica: $ 2cos2x-2sen2x> 0 $ da risolvere nell'intervallo $ [0;Pi ] $ . Ho provato ad usare le formule di duplicazione ma non riesco a venirne a capo. Vi ringrazio per l'aiuto Saluti
3
27 gen 2021, 21:05

Frink88
Piccolo dubbio riguardo all'insieme delle soluzioni dell'equazione differenziale $y'=2\sqrt(y)$. Oltre alla soluzione costante identicamente nulla ottengo le non costanti nella forma: $y=(t+c)^2$ La domanda è: imponendo la condizione iniziale $y(0)=1$, non ottengo un'unica soluzione perchè nell'intorno del punto $t=0$ l'ipotesi di $f(t,y)$ lipschitziana non è soddisfatta e quindi non è piu garantita l'unicità?
14
28 gen 2021, 16:11

lanevi12
Buongiorno! Non capisco quale sia l'errore nel risolvere questa derivata $ f(x) = log|(x+3)/(2-x)| $ Ho provato a risolverla così: $ g'(x) = 1/|f(x)| $ derivata del log $ * |f(x)|/f(x) $ derivata del valore assoluto $ * f'(x) $ derivata della frazione Ovvero $ f'(x) = 1/|(x+3)/(2-x)| * |(x+3)/(2-x)|/((x+3)/(2-x)) * ((1)(2-x)-(x+3)(-1))/(2-x)^2 = $ semplifico den e num delle prime due fraz. $ 1/((x+3)/(2-x)) * (2-x+x+3)/(2-x)^2 = (2-x)/(x+3) * 5/(2-x)^2 = 5/((x+3)(2-x)) $ Mentre il risultato dovrebbe essere: $ f'(x) = -5/((x+3)(2-x)) $
2
29 gen 2021, 14:39

salvatoresambito
Salve ragazzi, non riesco a scrivere la KCL rispettivamente ai nodi relativi a v1 e v2 Ho provato in questo modo : $i_2+i_1-i_x +5 =0$ nodo 1 $i_x + i_3 -i_2 +7= 0$ nodo 2 Quella relativa al nodo 2 dovrebbe essere corretta, sulla 1 non capisco se devo tener conto del generatore da 7 ampere.Credo che il contributo dei due, debba essere 7-5 o 5-7 ampere, ma non riesco a capire quale ragionamento devo applicare per trarre questa conclusione. Poi al nodo 1 devo tener conto del ...
12
28 gen 2021, 16:42

thedarkhero
Sia $f:RR->RR$ una funzione liscia. Voglio calcolare $\nabla (f \cdot f)$, cioè il gradiente del prodotto scalare di $f$ con se stessa (cioè la derivata del prodotto scalare con se stessa). Ho che $\nabla (f \cdot f) = (\nabla f) f + f (\nabla f) = 2 (\nabla f) f$. Se ora considero una funzione $g:RR^n->RR^n$ liscia, vale una formula analoga per $\nabla (g \cdot g)$?

lollocau
Salve a tutti, è la prima volta che scrivo, nonostante sia un assiduo visitatore, quindi mi scuso in anticipo per eventuali errori e/o violazioni. In breve il mio problema nasce nel dimostrare che la condizione di Lie sia condizione necessaria e sufficiente alla canonicità di una trasformazione di coordinate, la prima del tutto assente e la seconda incompleta e poco rigorosa negli appunti e nel libro di testo. In particolare, nella realtà dei fatti, sono riuscito nell'intento di dimostrare la ...

paliotto98
Buongiorno a tutti, per dimostrare che una data sommatoria è uguale ad un elemento, devo dimostrare che la sommatoria di (xf)^n meno la sommatoria di (xf)^n + 1, per ogni n positivo o uguale a 0, mi deve dare come risultato 1. Ora, facendo bene i conti, mi risulta che venga fuori -1,allora vi chiedo, ho sbagliato io i calcoli, oppure è concettualmente possibile che un dato elemento per il suo inverso dia come risultato -1, rendendo comunque i due elementi uno l'inverso dell'altro, e quindi ...

ErnesFrghsieeee
Buonasera . Vorrei risolvere una trasformata di fourier utilizzando una delle proprietà . $ x(t)=3sinc[2t-8] $ utilizzando la proprietà di cambio di scala e mettendo in evidenza il 2 all'interno dell'argomento risulta : $ x(t)=3*1/2 rect[f/2]*e^(-j(4*2)pif) $ Secondo voi e' corretto ? Ho dei dubbi perche' nella formula del cambio di scala incece di f c'e' $ omega $ $ rect[omega /2] $ Grazie .
5
27 gen 2021, 18:37

Silente
Premesso che la domanda è puramente matematica e non ha a che vedere con l'elettromagnetismo, fornisco comunque un pò di contesto. Studiando sul libro 'Antenna theory and design' di R.S.Elliott, pag. 22, mi trovo di fronte a questa espressione: \(\displaystyle \frac{\rho}{\epsilon_0}\nabla\psi-j\omega\mu_0\psi \mathbf{J} \) dove \(\displaystyle \rho \) è la densità di carica, \(\displaystyle \mathbf{J} \) è la densità di corrente, \(\displaystyle \omega \) è la pulsazione, \(\displaystyle ...
1
23 gen 2021, 10:27

Silente
Premesso che non ho studiato analisi complessa, ho notato che la definizione di integrale e la sua relazione con la derivata si mantengono invariati se invece di pensare a funzioni \(\displaystyle f:X\subset \mathbb{R} \) si pensa a funzioni \(\displaystyle f:X\subset \mathbb{C} \) (purché si estanda implicitamente la definizione di limite a questo tipo di funzioni, cosa totalmente gratuita). Dunque ciò che è cruciale è che il dominio continui a essere \(\displaystyle \mathbb{R} \). A questo ...
3
24 gen 2021, 12:36

SimoneSc1
Salve ho questo esercizio di cui so solamente i risultati: Si considerino in $RR^4$ i sottospazi $U$ e $W$ definiti rispettivamente come: $ U = Span {((1),(3),(-1),(0)), ((1),(0),(-1),(2)),((-1),(6),(2),(-6))} $ e $W = {(x, y, z, w)^t \in RR^4 | x + y + 2z = x + z = 0}$ Determinare un insieme minimale di equazioni cartesiane per $U$, una base per $U\nnW$ e una per $U+W$. Io sono partito facendo un'eliminazione di Gauss per trovarmi la dimensione di $U$ e l'insieme minimale di equazioni ...
6
27 gen 2021, 17:06

tgrammer
Una massa m=2Kg è collegata ad una puleggia, di massa M=10Kg e raggio R=0.5m, mediante una fune inestensibile di massa trascurabile, che non slitta rispetto alla puleggia. La puleggia è libera di ruotare senza attrito attorno a un asse orizzontale. All'istante iniziale la massa m viene lasciata cadere da ferma, mettendo in rotazione la puleggia. Dopo essere scesa di un tratto h = 2 m dalla posizione iniziale, la massa m si sgancia dalla fune. Calcolare la velocità angolare di rotazione della ...

Frink88
Buonasera, qualcuno potrebbe controllare se ho risolto il seguente esercizio nel modo corretto? Data l'equazione differenziale $y'=x^2/(2y^2+1)+4$, discutere l'esistenza e unicità delle soluzioni dei problemi di Cauchy ad essa associati, studiare la monotonia delle soluzioni e il loro intervallo massimale di definizione. $f(x,y)=x^2/(2y^2+1)+4$ è definita su tutto $\mathbb{R}^2$ $f in \mathcal{C}^1(\mathbb{R}^2)$ quindi f è continua e lipschitziana in y uniformemente rispetto a x (è corretto dire che per mostrare ...
2
27 gen 2021, 19:17

tgrammer
nell'urto anelastico l'energia cinetica non si conserva. dunque l'energia meccanica non si conserva anche nel caso in cui l'urto è anelastico ma non ci sono forze dissipative ad esempio un urto anelastico tra due masse che avviene su un piano liscio, che poi risalgono fino a una certa quota h su un piano inclinato alla fine del piano liscio acquistando una certa energia potenziale. oppure posso scrivere che $ 1/2m_1v^2=(m_1+m_2)gh $ ? io penso proprio di no, ma vorrei una conferma. grazie

mat.pasc
Ciao, cercando di rispondermi a un dubbio con il forum sono giunto a questa conversazione https://www.matematicamente.it/forum/vi ... e#p8462980 , in particolare mi interessa capire di più riguardo a: "pilloeffe":la soluzione dell'equazione differenziale seguente: $\ddot{x}(t) + 2\zeta \omega_n \dot{x}(t) + \omega_n^2 x(t) = 0 $ ove $\omega_n := \sqrt{k/m}$ e $ c/m = 2\zeta \omega_n $ Si trova che la soluzione di tale equazione è la seguente: $x(t) = e^{- \zeta \omega_n t} (c_1 e^{sqrt{\zeta^2 - 1}\omega_n t} + c_2 e^{- sqrt{\zeta^2 - 1}\omega_n t}) $ Ora se $c^2 < 4mk \implies \zeta^2 - 1 < 0 $ (il che accade anche nel caso particolare $\zeta = 0 $) la soluzione può essere ...
9
25 gen 2021, 19:29

wattbatt
So che una curva per essere regolare deve avere almeno una parametrizzazione $\vec r (t)$ tale che: - ha componenti continue con derivate continue - la sua derivata non si deve annullare Se volessi dimostrare che una curva non è regolare non posso certo usare questa definizione perchè dovrei far vedere che nessuna delle infinite parametrizzazioni possibili ha queste caratteristiche; per esempio, sul libro c'è una funzione $y=root(3)(x^2)$: che se ho capito bene ...
2
27 gen 2021, 16:11