Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Vash437
Ciao sono nuovo, ho un problema con un limite in uno studio di funzione con f(x)=$(sqrt((x^3-8)/x))$..in particolare quando vado a verificare l'esistenza di asintoti obliqui ho : $lim_(x\to\infty)(sqrt((x^3-8)/x)/x)$ = 1 e $lim_(x\to\-infty)(sqrt((x^3-8)/x)/x)$ = -1 il primo mi viene ma il secondo proprio non capisco come faccia a venire "-1", qualcuno riesce ad aiutarmi? vi ringrazio in anticipo..ciao Vash
2
2 gen 2013, 11:39

Tonin1
buon giorno a tutti! avrei 2 domande da porvi! Il mio libro a proposito della pulsazione dice che "numericamente la velocità angolare è eguale alla pulsazione, anche se il significato fisico delle due grandezze è diverso." qualcuno può spiegarmi questa affermazione? qualche rigo più sotto continua dicendo: "Nel caso del moto circolare non uniforme oltre all'acc. centripeta, che è variabile perchè la velocità varia anche in modulo, dobbiamo considerare anche l'acc. ...

laska1
Buongiorno, volevo porgere la domanda seguente: Se, durante lo svolgimento di esercizi su spazi vettoriali, basi, nucleo e immagine, dovessi trovare che la dimensione di uno spazio vettororiale X è 3 e poi mi fosse richiesto di trovare una sua base e nel fare questo (tramite la matrice associata) trovassi 4 coefficienti $lambda_(i=1,...,4)=0$ dovrei comunque scegliere solo tre vettori dalla matrice? E nel fare questo, ne sceglierei tre qualunque ? (dato che ho trovato che sono tutti e 4 linearmente ...
4
28 dic 2012, 11:13

Ariz93
Sono le prime nozioni ma non mi vanno proprio giù, qualcuno mi aiuta? :S Descrivere l'insieme dei numeri complessi z per cui : \(\displaystyle \alpha) |z-(1-i)| =2 \) \(\displaystyle \beta) (1-i)z-(1+i)\overline z =i \) \(\displaystyle \gamma) |z|
5
1 gen 2013, 23:35

giopk
Buongiorno ragazzi, voglio porvi un quesito che mi è stato chiesto all'esame orale di fisica 2 ingegneria informatica ed elettronica, allora supponiamo di avere un condensatore a facce piane e parallele, con una certa capacità $ C $ divisi da una distanza ? D ?. Cosa accade se allontano le facce di una distanza ? 2C ? ?? Cosa rimane costante? io non ho saputo rispondere alla domanda in quanto non so cosa rimane costante, la capacità si dimostra dipendere dalla distanza delle ...

floppyes
Ciao a tutti e buon anno Ho alcuni dubbi su questo esercizio riguardante le funzioni continue: Siano $alphainR^+$ e $f:R^2->R$ data da: $f(x,y)=(|y|^(7alpha)sen(x^2+y^2)e^-(|y/x|))/(3(x^2+y^2)^(3/2))$ se $x=0$ $0$ se $x=0$. Determinare per quali valori di $alpha in R^+$ f è continua in $(0,0)$ Io ho pensato di utilizzare le coordinate polari, quindi ho sostituito $x=rhocostheta$ e $y=rhosentheta$ e sono andato a calcolare il limite. $(|rhosentheta|^(7alpha)sen(rho^2))/(3rho^3e^|tantetha|)$ Ho ragionato ...
1
1 gen 2013, 16:47

Paolo902
Mostrare che non esiste una successione \((t_k)_k \in \mathbb R^\mathbb N\) tale che \[ \sum_k \vert a_k \vert
3
1 gen 2013, 16:38

dennysmathprof
se f continua a R e [tex]\int_{x}^{x+1}f(t)dt=\cfrac{\int_{0}^{x}f(t)dt}{x}[/tex] dimostrate che f e' costante ho fatto [tex]f(x+1)-f(x)=\cfrac{f(x)x-\int_{0}^{x}f(t)dt}{x^2}[/tex] oppure [tex]F(x+1)-F(x)=F(x)/x \cfrac{F(x+1)-F(x)}{x+1-x}=\cfrac{F(x)-F(0)}{x-0}[/tex].....Lagrance ma .....

angeloferrari
Questa è la dimostrazione del teorema del completamento della base presa da wiki che l'ha presa dal Lang ( il libro di testo del corso tra l'altro) dite che può andare considerando che è la stessa del mio libro solo spiegata (forse) meglio? la prof l'ha dimostrato in maniera anche piuttosto contorta e lunga, non capendo la sua dimostrazione ha senso ricordarla a memoria, preferirei ricordare questa dato che è semplice e chiara e per fortuna l'ho capita! Il teorema di completamento a base Sia ...

DavideGenova1
Ciao, amici! Posto in questa sezione perché si tratta di un problema relativo alla matrice usata nel metodo di Gauss-Seidel usato in algebra lineare numerica... mi scuso se avessi sbagliato sezione... Data una matrice tridiagonale \(A=\text{tridiag}(-1,2,-1)=L+D+U\) dove la matrice $L+D$ è la parte triangolare inferiore (2 sulla diagonale principale e -1 sulla diagonale "appena sotto", il resto tutti 0; $D$ è appunto la matrice diagonale che ha la diagonale principale ...

Gruppia
Salve a tutti. Prima di ricavare la celeberrima formula $ E=mc^2 $ il mio prof di fisica ha fatto un'introduzione sui funzionali. Come esempio ha descritto il funzionale della lunghezza di una curva, $ phi (gamma )=int_(x_1)^(x_2) sqrt(1+(y')^2) dx $ . Per ricavare questo funzionale abbiamo integrato $ ds=vdt $ . Ad un certo punto, abbiamo detto che: $ (dy/dt)/(dx/dt) =dy/dx=y', $ semplificando i $dt$ come se si trattasse di una frazione vera e propria, e non di una derivata. Perchè si può fare questo?

Sk_Anonymous
Mi sembra vero il seguente fatto ( - spero di non pasticciare con gli indici): sia \(\displaystyle p \) un numero primo e sia \(\displaystyle n \in \{2,\dots,p-2\} \). Allora \[\displaystyle p \ | \ \sum_{k=n}^{p} \binom{k}{n} \] Riuscite a fornire una dimostrazione oppure un controesempio?

JackNewHouse
Mi serve un idea per risolvere questo limite $lim_(x->oo ) (x^3(1/x-sin(1/x)))$ non so dove mettere mano... il testo dell'esercizio mi suggerisce di usare il teorema di de l'Hopital però... Help!!

process11
In un’urna ci sono $r$ palline bianche ed $s$ palline nere. In n estrazioni, con reimbussolamento, sia $E_j$ l’evento che la pallina estratta alla $j$-esima estrazione è bianca; sia $F_k$ l’evento che siano state estratte esattamente k palline bianche. Mostrare che $P(E_j | F_k) = k/n$ potrebbe essere una applicazione del teorema di bayes? $P(E_j | F_k)=(P( F_k|E_j )P(E_j))/(P(F_k))$ ora dovrebbe essere $P(E_j)=r/(r+s)$ come si calcola ...
1
31 dic 2012, 13:49

fede.unive
Salve a tutti, non so se si più corretto postare questa domanda qui ovvero nella sezione analisi. Qualora i moderatori lo ritengano opportuno, pregherei di spostare l'argomento. Il problema è il seguente. Ho una variabile aleatoria $L(\vec u)$ così definita $L(\vec u)=\sum_{i=1}^\n\ u_i * L_i$ $\vec u = (u_1, u_2, ..., u_n)$ dove ${L_i}_{i=1}^n$ è una successione di variabili aleatorie "perdita dell'i-esimo portafoglio" e $u_i$ è una variabile deterministica "quota di ricchezza investita nel medesimo ...
1
31 dic 2012, 18:48

Lotus2
Salve, vorrei chiedervi un parere circa il seguente esercizio di sincronizzazione tra processi concorrenti. Per la soluzione mi sono ispirato al classico problema lettori-scrittori. Ho utilizzato come dati condivisi 3 semafori (donne, uomini, mutex) e 2 contatori, uno per le donne e uno per gli uomini. Mutex controlla l'accesso ai contatori. TESTO: Un locale pubblico è dotato di un’unica toilette cui possono accedere sia uomini che donne e che viene gestita in base alle seguenti regole: 1- ...
13
8 set 2012, 16:50

dennysmathprof
se [tex]f,g: [a,b]\rightarrow R[/tex], due volte derivabilli e [tex]f(a)=g(a).f(b)=g(b), f{'}(a)>g{'}(a),f{'}(b)>g{'}(b)[/tex] esiste almeno uno [tex]x_o \in (a,b): f{'}{'}(x_o)+g(x_o)=g{'}{'}(x_o)+f(x_o)[/tex]

Seldon1
ragazzi non riesco a capire alcune proprietà della funzione immagine e controimmagine...cioè: data una $f:A->B$ sia la funzione immagine quella che va dall'insieme delle parti di A in quello di B e la funzione controimmagine quella che va dalle parti di B alle parti di A, perchè si dice che l'immagine non preserva le operazione di complemento e un unione?che la controimmagine le preserva ci sono,il fatto è che pur prendendo qualsiasi esempio di funzione queste proprietà sono rispettate ...
8
31 dic 2012, 10:56

pepitagold
Buon 2013 a tutti ! Stavo dicendo : con buona approssimazione i raggi solari che ci arrivano sono " paralleli" , giusto ? Mi chiedevo allora perchè quando spuntano da un buco nelle nuvole appaiono divergere fortemente. Non può essere diffrazione xchè il buco è troppo grande , nè un fatto di prospettiva. Googlando (chiedo scusa a quelli dell'accademia della crusca ) qua e la non trovo spiegazioni convincenti. Qualche idea ? Ciao a tutti

floppyes
Ciao a tutti e Buon Natale. Sono alle prese con lo studio dei punti stazionari di una funzione a due variabili (tema esame analisi 2) Testo: Determinare e classificare i punti stazionari della funzione $ f:R-R^2 $ data da $ f(x,y)=x+senx+7y^2 -pi $ Per prima cosa ho calcolato le derivate: $ { ( (partial)/(partialx)=1+cosx ),( (partial)/(partialy)=14y):} $ In seguito ho calcolato il gradiente che mi ha dato come risultato il punto stazionario: $ ((2k+1)pi,0) $ Vado quindi a calcolare le derivate parziali miste: ...
11
26 dic 2012, 11:13