Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Buongirono a tutti ! Sto provando a risolvere il seguente esercizio :
" Sia $ X $ uno spazio di Banach e $ T \in L(X) $ un operatore lineare limitato che mappa X in se stesso; sia $ M $ tale che $ ||x||<= M ||Tx|| , \forall x\in X $ ,si dimostri che $T(X)$ è un sottospazio chiuso di $ X$ ".
Devo far vedere che preso un elemento $ {Tx_n}_n \in T(X) $,esso converge ad un elemento ${Tx} $ di tale spazio ! Ma devo anche dimostrare che $ x_n $ converge ...
Nel cercare informazione su serie e trasformata di Fourier su internet, mi sono imbattuto in contraddizioni e imprecisioni e ho le idee confuse.
Per quanto riguarda la serie, nella gran parte dei siti è scritto che la funzione da rappresentare come serie deve essere periodica. Io, invece, sapevo che non deve necessariamente esserlo, e ho trovato "conferma" su pochissimi siti. Però, nelle formule di calcolo dei coefficienti della serie compare il periodo. Ma se è vera la seconda, qual'è il ...
Ho f(x,y) = y^4 - 3 x^4 - 2x^2*y^2 - y^2 +3x^2
Ho già trovato punti stazionari , matrice hessiana con determinante, gradiente, punti di sella , e Max e minimo della funzione. orA come faccio per trovare Max e minimo di questa funzione rispetto a un insieme d= { x,y | x>=0 , -(radice di 3)x
Buongiorno a tutti ! Sto provando a risolvere questo esercizio di Analisi Funzionale,ma ho dei dubbi ! L'esercizio è il seguente : " Sia $ C [0,1] $ lo spazio di Banach delle funzioni continue $ u:[0,1] \rightarrow R $ con la norma del massimo e sia $ {u_n}_n \subset C [0,1] $ una successione di funzioni equicontinue.Sia $ K \subset[0,1] $ l'insieme $ K:={x \in [0,1] | {u_n(x)}_n \text { è di Cauchy} } $.Si dimostri che K è chiuso .
Allora: ${u_n}_n$ sono equicontinue,quindi $\forall \varepsilon_1 >0 \exists \delta>0 : $ per $ x,y \in [0,1] |x-y |< \delta \Rightarrow |u_n(x)-u_n(y)|< \varepsilon_1 $; inoltre le ...
ciao ragazzi, ho dei dubbi su come procedere per lo svolgimento degli esercizi per determinare il carattere di una serie:
Es. devo studiare la convergenza della serie $\Sigma_(n=1) ^(\infty) \frac{(n+1)!}{(n^2n!)}$
Per verificare la convergenza da dove dovrei partire?? Io parto dal criterio del rapporto perchè mi sta simpatico...
Applico il criterio del rapporto ottengo quindi
$\lim_(x to +\infty) \frac{(n+2)!}{((n+1)^2(n+1)!)} \frac{n^2n!}{(n+1)!} = \lim_(x to +\infty) \frac{(n+2)(n+1)!}{ (n+1)^2(n+1)!} \frac{n^2n!}{(n+1)n!}=\lim_(x to +\infty) \frac{n^2(n+2)}{n+1}^3=n^3/n^3=1$ a questo punto essendo il lim pari all'unità non si può dir niente e dato che mi hanno riferito dell'esistenza di un teorema che ...
Calcolare al variare di $\rho$ appartenete a R, il limite
$\lim_{n \to \infty}\1/k^\rho\sum_{k=n}^\{7^n}\{1/k}$
io pensavo di risolverlo ponendo la sommatoria tra gli integrali
$\int_n^(n+1) (1/x) dx$ < $\lim_{n \to \infty}\1/k^\rho\sum_{k=n}^\{7^n}\{1/k}$ < $\int_(n-1)^(n) (1/x) dx$
vorrei sapere il criterio per trovare a e b dell'integrale, e a quale teorema potevo riferirmi; perchè vedendo altri esercizi a volte la parte sopra e sotto della sommatoria rimangono invariate per l'integrale a sinistra
Boungiorno, ho un paio di domande sui limiti:
1)$ lim_(x,y -> 0,0) (e^(x^3+y^2)-1)/(x^3+y^3+x^6+y^8) $
per $x -> 0$ si ha $ lim_(x -> 0) (e^(y^2)-1)/(y^3(1+y^5)) = (e^(y^2)-1)/(y^3(1+y^5))$
per $y -> 0$ si ha $ lim_(y -> 0) (e^(x^3)-1)/(x^3(1+x^3)) = (e^(x^3)-1)/(x^3(1+x^3))$
Vedo che i limiti sono diversi, quidi posso concludere che il limite non esiste? Oppure dovrei studiare per quali valori
$(e^(y^2)-1)/(y^3(1+y^5)) = (e^(x^3)-1)/(x^3(1+x^3))$ se cosi fosse dopo come procedo?
Il limite lungo tutte le rette e in coordinate polari viene $ oo $
2) $ lim_(x,y -> 0,0) (y^2sinx)/(2(cosy-1)x) $
per $x -> 0 $ il limite e' $0/0$
per ...
$X={u in C^1([0,2],RR): u(1)=0}$
norma in $X$ è definita come $p(u)=max{|u'(t)|:tin[0,2]} AA u in C^1([0,2],RR)$
Stabilire se il funzionale lineare $L:u in X -> \int_{0}^{2} u(t) dt in RR$ è continuo.
Devo cercare quindi di trovare $MinRR$ tale che $|L(u)|<=M*p(u)$
$|\int_{0}^{2} u(t) dt|=|\int_{0}^{2}\int_{1}^{t} u'(s) ds dt|<= \int_{0}^{2} (max_{1<s<t} {|u'(s)|}*\int_{1}^{t} ds) dt$
poi tiro fuori dall'integrale il massimo maggiorandolo con il massimo su tutto $[0,2]$ (che è la norma che voglio) ma mi resta l'integrale di $(t-1)$ che è $=0$...
dove sbaglio?
(sorry titolo, non ci ho pensato per ...
$\sum_{n=1}^{+\infty}\frac{1}{n+\sqrt{n}}$ l'ho studiata in questo modo:
$\sum_{n=1}^{+\infty}\frac{1}{n+\sqrt{n}}=\sum_{n=1}^{+\infty}\frac{1}{\sqrt{n}}(\frac{1}{\sqrt{n}+1})=\sum_{n=1}^{+\infty}(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n}+1})$
si tratta di una serie telescopica. Calcolo quindi
$\lim_{k \to +\infty}\frac{1}{\sqrt{k}+1}=0$
quindi
$\sum_{n=1}^{+\infty}\frac{1}{n+\sqrt{n}}=1$
Giusto?
Buona sera a tutti!
Dovrei calcolare il lavoro di $F\equiv(e^(z^2)+ze^(x+y),2e^(z^2)+ze^(x+y),2z(x+2y)e^(z^2)+e^(x+y))$ lungo la curva
$\gamma:{(x=t),(y=t-1),(z=t^3):}$
con $t\in[0,1]$
Mi calcolo il rotore di $F$:
$rot(F)=|(\veci,\vecj,\veck),(\partial/(\partialx),\partial/(\partialz),\partial/(\partialk)),(e^(z^2)+ze^(x+y),2e^(z^2)+ze^(x+y),2z(x+2y)e^(z^2)+e^(x+y))|=$
$(4ze^(z^2)+e^(x+y)-(4ze^(z^2)+e^(x+y)))\veci+$
$(2ze^(z^2)+e^(x+y)-(2ze^(z^2)+e^(x+y)))\vecj+$
$(ze^(x+y)-ze^(x+y))\veck$
$=>rot(F)=\vec0$
$F$ essendo definito in tutto $RR^3$ e irrotazionale è conservativo.
Mi calcolo il potenziale:
${((\partialg)/(\partialx)=e^(z^2)+ze^(x+y)),((\partialg)/(\partialy)=2e^(z^2)+ze^(x+y)),((\partialg)/(\partialz)=2z(x+2y)e^(z^2)+e^(x+y)):}$
$int(\partialg)/(\partialx)dx=inte^(z^2)+ze^(x+y)dx=xe^(z^2)+ze^(x+y)+h(y,z)$
Dove h indica che la costante della funzione potenziale dipende sia y ...
Salve a tutti.
Devo derivare (rispetto ad x) una funzione che mi lascia un po dubbioso.
La funzione in questione è:
$ P(x)=frac{(x/R)^(3/2)}{sqrt{ln((x+R)/R)-x/(x+R)}} $
Con R=const.
Ogni tentativo mi si complica sempre di più. Che trick posso usare?
Grazie.
allora vorrei sapere se ho fatto giusto questo esercizio...devo scrivere la serie di Taylor di questa funzione f(x)=$x^3sin(4x)$... e dallo sviluppo noto del seno ho scritto f(x)= $ sum_(n=0)^(oo ) (-1)^n ((4x)^(2n) 4x^4) / ((2n+1)!) $ .
Ora per studuare la convergenza ho fatto L= $ lim_(n -> oo ) (-1)^(n+1)((2n+1)!) / (((2n+3)!)(-1)^n ) $ = $ lim_(n -> oo ) (-1)^n(-1)((2n+1)!) / (((2n+3)!)(-1)^n ) $ = 0 e quindi R=$oo$ , cioè la serie converge per ogni valore di x....ho fatto bene?
ciao a tutti sono un pò messo male aiutooooo!!!
questo è un sistema di equazioni differenziali dove ka e kb sono costanti (a e b sono pedici) e u(t) è >0 e costante
dA/dt= - kaA +u(t)
dB/dt= - kbB +KaA
dovrei risoverlo con traformata di laplace e matrici ma non so come procedere
il metodo che ho pensato è questo ma ho bisogno di una conferma o eventuali altri metodi:
con Laplace :
dA/dt + kaA -u(t) = 0
dB/dt= - kbB + kaA
trasformo con Laplace entrambe le equazioni
{sA(s) + ...
Ciao, devo sviluppare questa serie di Laurent [tex]$\frac{z^2+1}{(z^3+1)^2}$[/tex] in [tex]$|z|>1$[/tex].
Ho trovato le singolarità e sono [tex]$z=-1$[/tex] e [tex]$z=\frac{1}{2}\pm i\frac{\sqrt{3}}{2}$[/tex].
A questo punto mi sono bloccato, cioè ho scomposto in fratti semplici [tex]$\frac{z^2}{(z^3+1)^2}+\frac{1}{(z^3+1)^2}$[/tex] ed ho pensato di utilizzare la serie binomiale per il primo fratto (avevo pensato alla derivata ma per il fatto che ci sia [tex]$z^{3}$[/tex] non si può applicare giusto? E quindi la serie ...
Salve a tutti..
anche se risulterà una cosa banale non riesco a capire come verificare,tramite la definizione,il limite di una funzione.
In questo esempio $f(x)=(2x^2-x-1)/(x-1) $ e $lim_(x -> 1) f(x)=3$ quindi devo verificare che $ AA $ $epsilon >0 $ $ EE $ $ del >0$ $ t.c.$ $ AA xne1$,con$ 0<|x-1|<del $, si ha $|f(x)-3|<epsilon $ .. io ho risolto la disequazione $|f(x)-3|< epsilon$ trovando come soluzioni $ 1-epsilon/2< x < 1+epsilon/2$.
Il mio problema ...
Salve!
Anche questo è un esercizio che ha un risultato che sinceramente non mi rassicura più di tanto...
Devo calcolare l'area della superficie $\Sigma={(x,y,z)inRR^3: x^2+y^2=4z^2, 1<=z<=2}$
Applicherei la formula $A(\Sigma)=intint_\Sigma||\phi_u\times\phi_v||dudv$
Inizio con la parametrizzazione:
$\phi:{(x=2ucosv),(y=2usinv),(z=u):}$
$u\in[1,2], v\in[0,2pi]$
Da cui ottengo i vettori tangenti:
$\phi_u=[[2cosv],[2sinv],[1]]$
$\phi_u=[[-2ucosv],[2usinv],[0]]$
Quindi mi calcolo le componenti della normale:
$\vecn_\Sigma=\phi_u\times\phi_v=|(\veci,\vecj,\veck),(2cosv,2sinv,1),(-2usinv,2ucosv,0)|=$
$(-2ucosv)\veci+(-2usinv)\vecj+(4ucos^2v+4usin^2v)\veck$
Quindi mi calcolo la norma:
$||\phi_u\times\phi_v||=sqrt(4u^2cos^2v+4u^2sin^2v+16u^2)=sqrt(20u^2)=2usqrt(5)$
Termino ...
salve,l'esercizio è questo:
trovare la serie di fourier della funzione:
$f(x) = {(0 , per -pi<x<0),(1 , per 0<x<pi):}$
ecco come ho fatto:
$a_n = 1/pi \int_{0}^{pi} cosnx dx = 0$
$b_n = 1/pi \int_{0}^{pi} sinnx dx = -1/(pi n) cosnx |_{0}^{pi} = -1/(pi n) [(-1)^n -1] = {(0 ,per n pari),(2/(pi n), per n dispari):}$
$a_0 /2 = 1/2$
per cui la serie risulta: $f(x)= 1/2 + sum_{1}^{infty} 2/(pi (2n+1)) sin(2n+1)x$
che ne dite?
se si,come potrei scriverla in forma complessa?
Si considerino il sottinsieme di $RR^2$
$A = { x in RR^2 : -1 <= x_1 <= 1}$
e la funzione $f = A \to R$ definita quasi ovunque da
$f(x) = frac{x_1}{|x_1|}e^{|-x_2|}$
-Si provi che $f$ è integrabile su $A$
-si calcoli $\int_A f$
non riesco a capire come risolvere questo esercizio. credo che si tratti di integrali di lesbegue. ringrazio chiunque mi dia una mano!
Ho questa equazione complessa:
$z^4 -(8+i)z^2 +8i =0$ per cercare di risolverla ho provato a fare la sostituzione $t=z^2$ arrivando così a
$t^2 -(8+i)t +8i = 0$ che a me sembra del tipo $ax^2+bx +c =0$
Ho provato a risolverla così ottenendo $t_(1,2)=(8+i +-sqrt(64 -1 +16i -32i))/2=4 +i/2 +- sqrt(63)/2 +sqrt(-16i)/2=(4+3sqrt7) +i/2 +sqrt(-16i)/2$
Più vado avanti e più la soluzione in $t$ assume aspetti più complicati... Il problema è che poi non posso risolvere in z, non avendo una soluzione in t accettabile... Magari c'è una soluzione più semplice...Grazie...
Salve,
Dovrei calcolare l'equazione di questa retta nella forma esplicita, esercizio banale ma con gli anni la memoria si arruginisce un pò
La forma esplicita è:
\(\displaystyle Y = mX + q \) , dove \(\displaystyle q = 1/\theta \) , il membro alla X ha segno - , mentre m?
Come lo determino il coefficiente angolare, oltre che come \(\displaystyle m=(y2-y1)/(x2-x1) \) ? So che dovrei vedere come si comporta la retta quando \(\displaystyle Y = 0 \), ma mi sono bloccato qua
Grazie