Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Salve a tutti,
volevo sottoporvi un dubbio che mi è venuto leggendo alcuni appunti di un mio collega.
Siano $Omega sube RR^n$ Lebesgue misurabile, $f:Omega rarr RR$ e la successione ${x in Omega:f(x)>=t+1/k}$ con $k in NN$ e $t in RR$. Come faccio a dire che tale successione è crescente?
ciao ragazzi
avete qualche link a qualche ottima dimostrazione della media aritmetica perche non la capisco tanto.
se $ A_n=(a_1+...+a_n)/n $
$ lim_(n -> +oo) a_n=l rArr lim_(n -> +oo ) A_n =l $
sul mio libro (alvino, trombetti) fa dei passaggi che non riesco a capire
mi potete aiutare? grazie
ciao ragazzi sto risolvendo un esercizio di ricerca di massimi e minimi vincolati; ho che $f(x,y)=x-y $
mentre il vincolo è $g(x,y)=atg(x^2+y^2-2)-2+x-y=0$. devo imporre che il gradiente della lagrangiana $L(x,y, \lambda)$ sia $(0,0,0)$ e risolvendo il sistema di 3 eq in 3 incognite:
$1-\lambda((2x)/(1+(x^2+y^2-2)^2)+1)=0$
$-1-\lambda((2y)/(1+(x^2+y^2-2)^2)-1)=0$
$atg(x^2+y^2-2)-2+x-y=0$
ottengo $x=-y$ ponendo uguali i valori di /lambda esplicitati dalla prima e dalla seconda equazione. sostituendo nella terza del vincolo (derivata ...
Buongiorno a tutti!
facendo degli esercizi mi sono imbattuto in questa funzione di cui devo fare (come da titolo) una serie di Laurent intorno alla singolarità $z=i$:
$f(z)=(z^2)/(z^4+5z^2+4)$
Questa funzione dovrebbe: essere regolare a $z= \oo$ ed avere poli semplici in $z=+-i$ e $z=+-2i$.
solitamente per trovare lo sviluppo in serie di Laurent di altre funzioni (ad esempio $g= z/((z+1)(z+2))$ intorno a $z=-2$) procedevo con una sostituzione del tipo ...
Ciao, allora io dovrei studiare le singolarità della funzione
$f(z) = sin^2(z)/(z*(z^2+1))$
Io individuo le singolarità da studiare in $z_0=0$, $z_(1,2)=+-i$
Ora,
$lim_(z->0)f(z) = lim_(z->0)(sin(z)/z)*(sin(z)/(z^2+1)) = 0$
Per il limite per $z->+-i$, ho pensato di scrivere $sin(z)=(e^(iz)-e^-(iz))/(2i)$ ed effettuare il $lim_(z->+-i)$... mi confermate che ho imboccato la strada corretta?
Salve , come risolvere questo limite applicando la formula di Taylor?
$\lim_{n \to \infty}(2n+3)/(4+3n+5nsqrt(n))$
da cui $(2n+o(n))/(5nsqrt(n)+o(nsqrt(n)))=0$ non capisco quali passaggi portano all'utima espressione.
Negli altri esercizi che ho incontrato al contrario di questo ho riconosciuto sempre sviluppi noti. Grazie.
Ciao , dovrei trovare le radici della seguente funzione complessa di variabile complessa :
$T(m)=$$\sum_{n=1}^prop $$1/(2n)^m$
ma non le so trovare , una volta posto $\sum_{n=1}^prop $$1/(2n)^m=0$ è buio totale ..
sapete dirmi quali siano le sue radici ?
Vi ringrazio anticipatamente
Buongiorno a tutti! Sto provando a preparare l'esame di AM2, ma le difficoltà sono congrue. Un esercizio nemmeno troppo difficile (considerati gli altri!) mi chiede di determinare una soluzione dispari in serie di potenze per l'e.d.o.
$y''-xy'+\alpha y =0$
al variare di $\alpha$ nei reali.
Inizialmente non mi sono lasciato spaventare e ho cercato soluzioni in forma $y=\sum A_n x^n$ da cui derivando e sostituendo si perviene ad un'espressione in cui tre sommatorie non sono sincronizzate ...
Limite di funzione (75282)
Miglior risposta
Lim x^2+5sinx /
x→0 3x- xcosx
Non riesco a risolvere questo limite di funzione! Potete spiegarmelo x favore? In quanto non ho mai fatto sin, cos e di questo tipo non so risolverli. La forma indeterminata è 0/0, però poi non so scomporlo! Certa di una vostra risposta, vi ringrazio anticipatamente!! =)
Ciao a tutti,
ho cominciato a studiare le serie di funzioni e totale-uniforme convergenza delle stesse. Il testo su cui studio è "analisi matematica 2" seconda edizione di Enrico Giusti. L'autore dopo aver introdotto alcuni teoremi iniziali per le serie in spazi di Banach (totale convergenza, integrazione e derivazione per serie) propone due esercizi (pag. 43 es. 1.1 e 1.2). Il primo chiede di provare l'uniforme convergenza delle serie date negli intervalli indicati, e fin qui tutto bene, il ...
Ciao a tutti
scrivo ancora per rettificare se ho svolto bene questo esercizio applicando allo stesso esercizio sia il criterio dell'assoluta convergenza sia il criterio di Leibnitz ( lo ho fatto per esercizio so che ne basta scegliere uno dei due )
$\sum_{n=1}^oo (-1)^(n+1)/(n^2-(-1)^n)$
ho applicato prima il criterio di assoluta convergenza e ottengo passando al modulo, se ho applicato bene, questo:
$\sum_{n=1}^oo 1/(n^2-1)$ da cui essendo questo $~= 1/n^2$ concludo che si comporta in modo simile e che quindi ...
Ragazzi buonasera a tutti.
Volevo chiedervi se avete idee sul come risolvere il seguente esercizio:
Calcolare la lunghezza della curva cartesiana $gamma$ il cui supporto è grafico della seguente funzione:
$y =x/(x+1)*sin(1/x)$ con $x in (0,1]$
In teoria la detta $phi(t)$ una parametrizzazione di $f(x)$, la lunghezza della curva la posso ottenere calcolando:
$int_(0)^(1) ||phi'(t)||dt$
Ma ponendo $x = t$, quello che viene fuori è vagamente improponibile.
Idee?
ciao a tutti scrivo per un altro dubbio che mi è appena sorto svolgendo questo esercizio, è la prima volta che faccio un esercizio del genere e chiedo a voi se ho svolto nel modo giusto. L'esercizio dice:
calcolare il seguente limite :
$\lim_{n \to \infty}root(n)(2^n+3^n)$ ... io ho svolto cosi, prima me la sono scritta nella forma: $\lim_{n \to \infty}(2^n+3^n)^(1/n)$
adesso ho pensato di moltiplicare e dividere per $3^n$ in questo modo: $\lim_{n \to \infty}(3^n*(2^n+3^n)/3^n)^(1/n)$
quindi separo un po i termini e ottengo questo: ...
Pensavi fosse una domanda per te vero??? E invece...
Tanti auguri di buon compleanno al grandissimo tutor di matematica Ciampax.
Colgo l'occasione di ringraziarti per gli aiuti che mi hai dato nelle domande che ho postato :D
Guarda che torta ho trovato per te :pp
:)
Salve, ho un piccolo dubbio dato che mi sono trovato di fronte un esercizio del genere
$root(n)(2n^5+1)$ ... in teoria dovrei risolvere un limite del genere dato che è un piccolo esercizio di un vecchio esame pero essendo che esiste il limite notevole $root(n)(n^a)=1$ ... potrei praticamente concludere subito che questo limite fa 1 dato che il $+1$ sotto radice non mi cambia niente e che il $2n^5$ posso vederlo quasi come $n^5$ e quindi è giusto concludere ...
Salve a tutti..
ho cercato già questa cosa su internet e sul forum ma non ho trovato molto
Io ho sul libro questa definizione di Insieme misurabile secondo Lebesgue :
L'insime E è misurabile se la misura di E è data dalla somma della misura esterna di un intervallo intersecato l'insieme E e della misura esterna della differenza tra l'intervallo stesso ed E.
Non riesco a capire questa definizione, cioè quand'è che un insieme si dice essere misurabile secondo Lebesgue praticamente??
Grazie a ...
come posso calcolare il $ lim _(( x,y) to + infty) x/ ( 1+x^2+ y^2) $ ?posso usare le coordinate polari ?
Sup e inf di un insieme
Miglior risposta
Ciao qualcuno può spiegarmi questo esercizio perchè quando ci sono i log non so mai cosa devo fare. Grazie mille in anticipo
Determinare sup e inf dell’insieme
A = {x appartiene a R : log3(x − 2) − 2 log(x − 2) < 0},
specificando se si tratta di massimi/minimi
Facendo alcuni esercizi sui domini delle funzioni è saltata fuori una f(x)= $root(3)(x)$ . Sinceramente, l'ho completamente ignorata perché pensavo che anche per x negative fosse definita (alle superiori ho sempre fatto così perlomeno). Quando il prof. ha corretto l'esercizio alla lavagna, però, ha detto che è definita solo per x positive! Quando ha spiegato il perché ha detto così: il dominio della funzione f(x)=$root(n)(x)$ è $RR^+$ perché nel punto (0,0) non è definita ...
Non riesco a calcolare questo limite. Il risultato sarebbe $e^-1$.
$lim_{x \to \infty}((x-1)/(x+6))^(2x)$
Si può risolvere coi limiti notevoli