Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
valentina921
Salve a tutti, mi è venuto un dubbio: data una funzione, in un punto c'è una discontinuità 3° specie se in quel punto la funzione ammette limite ma in quel punto non assume valore (caso di una lacuna), oppure se esiste l'immagine di quel punto ed esiste anche il limite della funzione in quel punto, ma sono diversi (caso del punto isolato); ma se invece in un punto la funzione non ammette limite ma per quel punto esiste l'immagine, come nella funzione: $f(x) = {(sen(1/x),x!=0),(0,x=0):}$ come si classifica la ...
4
18 dic 2011, 19:52

Sk_Anonymous
Buongiorno a tutti. Vorrei chiedere conferma circa il calcolo di un limite che mi lascia lievemente perplesso. Vorrei infatti calcolare \(\displaystyle \lim_{n \rightarrow + \infty} \sqrt[n]{\frac{1}{n^{k}}} \), il quale presenta una forma indeterminata del tipo \(\displaystyle 0^{0} \). Ho già dimostrato che \[\displaystyle \lim_{n \rightarrow+ \infty} \sqrt[n]{p}=1 \quad \forall \ p\gt 0 \] con \(\displaystyle p \) reale, e che \[\displaystyle \lim_{n \rightarrow + \infty} \sqrt[n]{n^{p}}=1 ...
4
17 dic 2011, 15:45

Seneca1
Consideriamo $f(x,y) = sqrt( | x * y |)$ , $(x,y) in RR^2$. Devo provare che questa funzione non è differenziabile in $(0,0)$. Svolgimento: La mia idea è la seguente: il candidato "giusto" per essere il differenziale della $f$ è il differenziale di Gateaux $(0,0)$, cioè: $f'(0,0)[h] = lim_(t -> 0^+) ( f((0,0) + t(h_1 , h_2)) - f(0,0) )/t = sqrt( |h_1 h_2 |)$ , dove $(h_1, h_2) = h in RR^2$ è un versore. Non essendo questo un operatore lineare, posso concludere subito che non può essere differenziabile, giusto?
13
17 dic 2011, 06:06

paolotesla91
Salve ragazzi ho questa funzione: $F(x,y)=x^3+2y^3+xy-4y^2+2y$. L'esercizio mi chiede di stabilire se la funz $F(x,y)=0$ è risolubile rispetto ad una delle variabili in un intorno del punto $(0,1)$ ed ho controllato ed è risolvibile rispetto alla variabile x. Dunque per Dini ho che: $\EE!y: y=f(x)$. Come secondo punto mi dice di chiamare la funz implicita come: $g(*)$ e di calcolare $g'(1)$ ed interpretare geometricamente il risultato. Il mio problema è ...
27
3 dic 2011, 20:04

Noisemaker
Ho eseguito alcuni esercizi ;li riporto per avere una verifica e di procedimento e di risultato: [size=150]1)[/size] $\lim_{n \to \infty}\(n\cdot\cos\frac{\pi}{n}\cdot \sin \frac{2\pi}{n})\ $ Soluzione: Sappiamo che : $\sin x<x$ e dunque $\sin\frac{2\pi}{n}<\frac{2\pi}{n}$ ; in più è noto il fatto che $|\cosx|\le\1$ e dunque $n\cdot\cos\frac{\pi}{n}\len$ ( in particolare); allora il limite dato diventa: $\lim_{n \to \infty}\(n\cdot\cos\frac{\pi}{n}\cdot \sin \frac{2\pi}{n})\ \le\lim_{n \to \infty}\(n\cdot\frac{2\pi}{n}\)\=2\pi$ per confronto dunque : $\lim_{n \to \infty}\(n\cdot\cos\frac{\pi}{n}\cdot \sin \frac{2\pi}{n})\ =2\pi$ [size=150]2)[/size] $\lim_{n \to \infty}\[(n^2+\sin n)\cdot\sin \frac{2}{n}]\ $ in questo caso osserviamo che: $|n^2+\sin n\|\le|n^2|+|\sin n\|= n^2+|\sin n\|\le n^2+1$ e ...
6
18 dic 2011, 19:57

paolotesla91
Salve ragazzi ho questo esercizio: $\varphi:[-1,2]-->RR^3$ $\varphi(t)={t^2,t^3,e^(t^2)}$ Mi si chiede di verificare se è una curva semplice. Io ho ragionato così: ho verificato prima che la curva sia regolare e non lo è, ma è regolare a tratti sui due intervalli $[-1,0]$ e $[0,2]$. La definizione di curva semplice è che deve succedere: $\varphi(t_1)!=\varphi(t_2)$ io ho ragionato facendo la verifica tra due punti consecutivi qualsiasi, quali ad esempio $\varphi(-1)$ e $\varphi(-1/2)$ ed ho che ...
4
17 dic 2011, 12:33

darkangel65
io continuo a litigare con i limiti di funzioni..gentilmente potreste darmi un aiuto? lim di x--->0 $\frac{\cosx - \cos 2x}{1- \cos x}$ ho riconosciuto il limite notevole...ma mi blocco!
9
18 dic 2011, 17:28

5mrkv
Sia $(E,d)$ uno spazio metrico con $E=\{x=\{x_n\}_{n=0}^{\infty}: \s\u\p_k|x_k|<\infty\}$ l'insieme delle successioni limitate in $\mathbb{C}$ e $d=\s\u\p_k|x_k-y_k|$. Per farmi una idea posso vedere nella condizione di Cauchy le successioni di successioni come insiemi numerati di successioni del tipo $x_{i}^{j}=(x_{l}^{1},x_{m}^{2},x_{n}^{3},\ ..)$. Devo mostrare che se una successione è di Cauchy allora converge in $E$. Quindi per $x_i^{j} \in E$ se $\s\u\p_{i}|x_{i}^{n}-x_{i}^{m}|<\epsilon => \s\u\p_{i}|x_{i}^{n}-x_{i}|<\epsilon$ da un certo $n,m$ in poi e $x_i \in E$. E' ...
1
18 dic 2011, 02:55

Vincent2
Devo calcolare la trasformata di Laplace di $f(t) = (2t)/pi 0<=t<=pi/2$ $f(t) = sent t>=pi/2$ Scrivo la funzione come unica espressione usando le porte $f(t)=(2t)/pi * (u(t)-u(t-pi/2)) + sen(t) * u(t-pi/2)$ Utilizzando la linearità ho $2/pi L(t u(t)) - 2/pi L(t u(t-pi/2)) + sen(t) u(t-pi/2)$ Il primo termine si trasforma subito in $1/s^2$, ma gli altri 2 non avendo la stessa variabile, non so come comportarmi!
5
18 dic 2011, 10:34

lazzatv
Cercavo un esempio di funzione uniformemente continua ma non a variazione limitata. Sono riuscito a trovare le seguenti implicazioni logiche: funzione lipschitziana -> funzione assolutamente continua -> funzione uniformemente continua -> funzione continua e funzione assolutamente continua -> funzione a variazione limitata basandomi su quanto letto sulla pagina di wikipedia riguardo le funzioni assolutamente continue. E cercando su internet sono riuscito a trovare vari controesempi che ...
4
17 dic 2011, 19:39

Summerwind78
Ciao ho ancora un dubbio su un limite il testo dell'esercizio mi chiede di calcolare [tex]\lim_{x\rightarrow0} A(x)e^{b(x)}[/tex] dove dice che $A(x)$ e $b(x)$ sono analitiche pertanto è possibile farne lo sviluppo di Taylor vorrei sapere se il mio ragionamento è giusto. Ho pensato che, dato che studiamo il limite per [tex]x\rightarrow0[/tex] posso sviluppare le due funzione con le serie di MacLaurin quindi vedere [tex]A(x) = \sum_{n=0}^{\infty} ...
2
18 dic 2011, 14:59

nadia891
Come posso svolgere : trovare massimi e minimi della funzione $F(x,y) = arcsin(x^2-y) $ in insieme $A=(0 <=y<= x)$ cioè in un insieme non compatto? Devo trovare i punti interni ( con il gradiente ) , verificare la frontiera ( con i moltiplicatori di lagrange) e poi mi fermo qui?
3
15 dic 2011, 10:45

streglio-votailprof
Salve a tutti! Trovo problemi nello svolgimento di questo esercizio: Stabilire per quali valori del parametro $\alpha$ > 0 il seguente integrale generalizzato converge: $\int_0^{infty}(e^(αx)-1)/(x^(2α)*e^(αx))dx$ La funzione proposta è continua e positiva in tutto l'intervallo (0;+$infty$) pertanto, al fine di stabilire se l'integrale proposto converge, è sufficiente studiare il comportamento di f per x-->0+ e per x-->+$oo$. Probabilmente dev'essere utilizzato lo sviluppo di Mc Laurin ...
2
18 dic 2011, 14:10

zinco79
Salve, stavo affrontando un esercizio e nella spiegazione mi sono trovato una semplificazione in un integrale indefinito che non capisco come venga eseguita... allora, in principio avevamo: $\int_ {} (x^3-x+2)/(x+1)^3 dx$ semplificazione: $\int_ {} ( - 3/(x+1) + 2/(x+1)^2 + 2/(x+1)^3 + 1 ) dx$ Esiste qualche regola a me ignota (ho ripreso gli studi dopo 12 anni..) per ottenerla? Grazie a tutti per l'aiuto
3
18 dic 2011, 13:05

Summerwind78
Ciao a tutti devo calcolare il seguente limite [tex]\displaystyle\lim_{x \rightarrow \infty} \left( \frac{x+\sin (x^{a})}{x^2} \right)[/tex] con $a>0$ il mio ragionamento è stato questo [tex]\displaystyle\lim_{x \rightarrow \infty} \left( \frac{x+\sin (x^{a})}{x^2} \right) = \lim_{x \rightarrow \infty} \left( \frac{x}{x^2} + \frac{\sin (x^{a})}{x^2} \right) =0 + \lim_{x \rightarrow \infty} \left( \frac{\sin (x^{a})}{x^2} ...
7
18 dic 2011, 12:27

Noisemaker
Vorrei sapere se il seguente procedimento risulta corretto: sia da calcolare: $\lim_{n to\infty}\ \sum_{k=n+1}^{2n} \ k^-2$ Anzitutto osserviamo che: $\lim_{n to\infty}\ \sum_{k=n+1}^{2n} \ k^-2=\lim_{n to\infty}\ \sum_{k=1}^{n} \ \frac{1}{(n+k)^2}=\lim_{n to\infty} \ \frac{1}{(n+1)^2}+\frac{1}{(n+2)^2}+\frac{1}{(n+3)^2}+\cdots+\frac{1}{(n+k)^2}$; osserviamo inoltre che: $\frac{1}{(n+n)^2}+\frac{1}{(n+n)^2}+\cdots+\frac{1}{(n+n)^2}\le\frac{1}{(n+1)^2}+\frac{1}{(n+2)^2}+\cdots+\frac{1}{(n+k)^2}\le$ $\le\frac{1}{n^2}+\frac{1}{n^2}+\cdots+\frac{1}{n^2}$ infatti ogni elemento della successione di sinistra è piu piccolo del corrispondente elemento della successione centrale : $\frac{1}{(n+n)^2}\le\frac{1}{(n+1)^2}$ ; $\frac{1}{(n+n)^2}\le\frac{1}{(n+2)^2}$ ; $\frac{1}{(n+n)^2}\le\frac{1}{(n+3)^2}$ ; $\cdots$ analogamente , ogni elemento della successione centrale è più piccolo dei ogni ...
5
18 dic 2011, 12:07

smaug1
Determinare al variare di alpha il valore del limite: \(\displaystyle \lim \) per \(\displaystyle x \rightarrow 0 \) \(\displaystyle x^\alpha \)\(\displaystyle \lgroup \)\(\displaystyle \frac{x+(senx)^2lnx}{e^{2x^2}-cos2x} \)\(\displaystyle \rgroup \) il metodo consiste nel procedere sviluppando taylor, e arrivare in un punto, nel quale posso discutere il limite per alcuni valori di \(\displaystyle \alpha \), il problema è il \(\displaystyle lnx \)...come posso fare?
8
17 dic 2011, 22:54

DavideGenova1
Ciao, amici! Vorrei chiedere una cosa riguardo gli "o piccoli": una funzione $f(x)=o(x^n)$ per $x->x_0$, dato che $lim_(x->x_0) (f(x))/(x^n) = 0$, non può essere nulla in un intorno di tipo $(x_0-\delta,x_0) uu (x_0,x_0+\delta)$ per qualche $\delta$, vero*? Altrimenti mi pare che $lim_(x->x_0) (f(x))/(x^n)$ sarebbe indeterminato, o no? $+oo$ grazie a tutti!!! *Cioè direi che $f(x)=o(x^n),x->x_0 => EE\delta:x in (x_0-\delta,x_0) uu (x_0,x_0+\delta) => f(x) != 0$.
10
16 dic 2011, 14:24

smaug1
\(\displaystyle \lim \) \(\displaystyle \frac{xe^{-\frac{1}{x^2}} - x^3}{sen4x - e^{2x} ln(1+4x)} \) \(\displaystyle x \rightarrow 0 \) In questo caso come bisogna agire? in x=o l'esponenziale del numeratore si può calcolare? se facessi una sostituzione \(\displaystyle x= \frac{1}{t} \) poi avrei problemi con il seno etc etc?? spero che si sia capito il mio problema...
6
17 dic 2011, 19:09

Vincent2
Devo scomporre in fratti semplici questa funzione $X(s) = (s*e^-s + 1)/((s-1)(s^2-2s+5)^2)$ Trovo subito gli zeri e ottengo una cosa del tipo $X(s) = A/(s-1) + B/(s-(1+2j)) + C/(s-(1+2j))^2+...+$ Ok il coefficiente A è facile, essendo un polo semplice: $A=1+e/(16e)$, no problem Andiamo col secondo che è un polo doppio Per il coefficiente B non si pongono problemi $B = R_f[s-(1+2j)]= lim_(s->1+2j)( ((s-(1+2j)) (s*e^-s + 1))/((s-1)(s-(1+2j))(s-(1-2j))))$ (Ho scomposto il quadrato come prodotto delle 2 radici, potendo così eliminare un pezzo al numeratore e denominatore, e mi viene fuori un altro numero: ...
1
17 dic 2011, 20:21