Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

Dominio di questo funzione.
$arctan(sqrtlogx^2-pi)$
il dominio dell'$arctan$ è tutto R, per la radice $logx^2>0$
Quindi il dominio è per $x>0$ ?

Salve a tutti. L'urgenza mi porta a postare un integrale improprio di cui bisogna dire se è convergente e in caso affermativo calcolarlo.
L'integrale è il seguente: $ int_(0)^(oo ) 1 / (sqrt(x)(x+1)) dx $
La funzione $ f(x)=1 / (sqrt(x)(x+1)) $ è definita per x>0, quindi l'integrale presenta un punto di singolarità in x=0, è giusto?
A questo punto come si procede per:
-dire se è convergente;
-calcolarlo;
Grazie a chiunque può rispondere

Risolvere il problema di cauchy
$u^{\prime}(t)-u^2(t)=4$
$u(0)=0$
specificando in quale intervallo I=(a,b) contenente l'istante iniziale t=0 è definita la soluzione.
sapete darmi una mano?non riesco a risolverla e non so nemmeno cosa vuol dire l'ultimo punto.

Ciao. Avete suggerimenti per risolvere un integrale indefinito del tipo \( \int\frac{1}{x}\left(\frac{a}{x}-1\right)^{b}dx \) ?
Ho provato per parti, ma non mi porta da nessuna strada. Grazie.

salve a tutti, ho questo integrale da calcolare $int int int (x^2+y^2+z^2-1) dx dy dz$ sul dominio E che si ottiene dall'intersezione tra il paraboloide di equazione $z=x^2+y^2$ e la superficie sferica $x^2+y^2+z^2=2$
In sostanza ottengo un insieme di (x,y,z) contenuti tra paraboloide (sotto) e sfera (sopra).
Il metodo più comodo per arrivare alla fine del problema è probabilmente riconoscere il dominio come normale rispetto al piano z=0 ed esprimere l'integrazione come $intint_D ( int_{x^2+y^2}^{sqrt(2-x^2-y^2)}(x^2+y^2+z^2-1)dz )dxdy$
con ...

Ragazzi vorrei porvi questa domanda: il teorema mi dice che "se la serie $\sum_{n=1}^{\infty}|a_n|$ è convergente, allora la serie $\sum_{n=1}^{\infty}a_n$ è convergente". Quindi se $\sum_{n=1}^{\infty}|a_n|$ è convergente, $\sum_{n=1}^{\infty}a_n$ si dice "assolutamente convergente" no? Bene, ora vorrei capire come potrei applicare questo ad un esercizio-tipo.. Quello che ho pensato istintivamente di dimostrare è questo: se anche la serie $\sum_{n=1}^{\infty}(-a_n)$ è convergente, allora la serie normale $\sum_{n=1}^{\infty}a_n$ è ...

Ho incontrato difficoltà in questo esercizio:
$\int int ((5y)/(7-x)) dxdy$
$D={(x,y): x^2+y^2>=1 ; x^2/4+y^2<=1 ; x>=0 ; y>=0}$
Quando ho un'ellisse la riconduco ad un cerchio deformandola, applicando poi il passaggio in coordinate polari. In questo caso invece, avendo sia un cerchio che un ellisse, quando pongo (e sostituisco nel dominio):
$\{(x=2u),(y=v):}$
anche il cerchio si deforma diventando un'ellisse. Diversamente, se opero tale sostituzione solo nell'ellisse avrò un dominio in 4 variabili $x, y, u, v$ e da qui non so ...
Di nuovo io.
Devo trovare lo sviluppo in serie di Mac Laurin per la funzione $f(x)= (2x)/(x^2-3x+2)$.
L'insieme x per cui vale l'ho trovato $x in (-1,1)$.
Quando devo trovare la serie però, io svolgo così:
$f(x) = 2/(1-x) - 2/(1-x/2) = 2 \sum_{n=0}^infty x^n - 2 \sum_{n=0}^infty (1/2)^n x^n$.
Sviluppando, trovo: $\sum_{n=0}^infty 2*(2^n - 2)/2^n x^n$ mentre il risultato dovrebbe essere $\sum_{n=0}^infty (2^n-1)/2^(n-1) x^n$.
Grazie in anticipo per la cortese attenzione.
Francesco

$f(x) = \sqrt{|x| - |x - 1|}$
Allora quando ho le funzioni che presentano il modulo mi sembra di ricordare che sono importanti i punti in cui ciasciun modulo si annulla.
$|x|={(x,if x>=0),(-x,if x<0):}$ e poi $|x -1|={(x-1,if x>=1),(1-x,if x<1):}$
Mettendo $0$ ed $1$ su una retta e studiando il segno di questi moduli si hanno tre intervalli in cui tutti e due sono o negativi, in uno alterni di segno e nell'ultimo tutti e due positivi! Quindi è come se dovessi studiare tre funzioni in base al valore della ...

Per $x->0^+$ di
$f(x) = \frac{2^x - 3^x} {\log (2^x + x^2 \sin (\frac{1}{x}))} = \frac{x \log 2 - x \log 3 }{\log (2^x(1 + \frac{x^2 \sin (\frac{1}{x})}{2^x}))} = (\frac{x \log 2 - x \log 3 }{x \log 2 + \frac{x^2 \sin (\frac{1}{x})}{2^x}})$
Aiutino? adesso mi sta venendo il dubbio, forse era meglio usare gli ordini di infinitesimo! no?
Come si fa a sapere quando f(x) interseca l'asintoto, come per es una funzione con asintoto obliquo y=x e la funz diciamo partendo da 0 resta sotto l'asintoto ma cresce superando l'asintoto e quindi intersecandolo e poi decresce e si riavvicina all'asintoto fino all'infinito. Cosa permette di trovare queste intersezioni durante lo studio della funzione? Oppure si deve controllare per ogni funzione con un asintoto se interseca facendo un sistema con la retta e la f(x)?

Domande di algebra lineare e geometria
Miglior risposta
Ciao a tutti avrei bisogno d’aiuto con questi esercizi: si tratta di rispondere vero o falso, alcuni li ho fatti ma altri non so la risposta. Vi chiedo di aiutarmi con quelli a cui non ho risposto e di correggermi quelle a cui ho risposto ma che sono sbagliate. Grazie mille in anticipo.
1) Consideriamo N con le operazioni di somma e prodotto:
a)N(+) è un gruppo abeliano FALSO
b)N(+) è un gruppo non abeliano FALSO
c)N(+) non è un gruppo abeliano VERO
d)N(+,x) è un anello FALSO
2) ...

Salve a tutti ragazzi...ho bisogno che qualcuno mi aiuti a fare un pò d'ordine..
Allora, cominciamo col dire che $\sinx^-1=1/sinx$ e $\arcsinsinx=x$ quindi la funzione $y=arcsinx$ e la funzione inversa di $y=sinx$ mentre $1/sinx$ è il reciproco di $sinx$ . Sarebbe quindi un eresia dire che $\1/sinx=arcsinx$
Passaimo ora alle funzioni iperboliche
Allora come prima $1/sinhx=sinh^-1x$ e $\text{settsinhsinhx}=x$ essendo $y=text{settsinhx}$ la funzione inversa di ...

ciao a tutti! dovrei scrivere il polinomio di taylor di $f(x)=(1+x)^a$. non so proprio da dove partire. ho pensato di passare alla forma $\sum_{k=1}^n (n!)/(k!(n-k)!)x^(n-k)$,ma non saprei affrontare il problema.cosa significa derivare una serie? dovrei trattare $\sum_{k=1}^n (n!)/(k!(n-k)!)$ come costante e $x^(n-k)$ come variabile?non saprei come affrontare la questione...

Per risolvere un limite ho dovuto applicare il teorema di de l'Hopital e derivare un integrale definito.. all'inizio mi sono trovato in difficoltà ma poi ho scoperto che esiste una formula immediata per farlo, ovvero:
$ d/dx \int_{alpha (x)}^{beta (x)} f(y) dy = alpha' * f(alpha) - beta' * f(beta)$
Ma.. perchè posso applicare questa formula?
Immagino che derivi dal teorema fondamentale del calcolo integrale.. o sbaglio?

Ciao a tutti! Sto facendo esercizi sulla convergenza degli integrali generalizzati!
L'integrale che vorrei dimostrare divergente è $ int_(1)^(oo) dx/ (x ln^2 x) $
Ls $f(x)$ è continua sull'intervallo $(1,+oo)$ , e studio la convergenza in un intorno di 1 e +oo .
Divido l'integrale in due : $ int_(1)^(oo) dx/ (x ln^2 x) = int_(1)^(a) dx/ (x ln^2 x) + int_(a)^(oo) dx/ (x ln^2 x) $
con $1<a$
Prto dal secondo integrale $int_(a)^(oo) dx/ (x ln^2 x)$
Per $x->+oo$ si ha che $ ln^2 x = O(x^c) , c>0 $ allora scrivo che $1/(x ln^2 x) = 1/(x O(x^c))= O(1/x^(c+1))$
Quindi, per ...

ciao a tutti! in un post vecchio ho trovato questo esercizio ma uno degli altimi passaggi non mi è chiaro:
Applicazione del Polinomio di Taylor (Resto di Lagrange), per approssimare il numero di Nepero a meno di un centesimo.
$e^x=1+x+(x^2)/2+...+(x^n)/n!+(e^t)(x^(n+1))/((n+1)!)$
$x=1 $
$e=1+1+1/2+1/6+...+1/n!+(e^t)/((n+1)!) $
$e^t/((n+1)!)<1/100$
$e^t/(n+1)!<e/((n+1)!)$
Poiché $0<t<1$, avrai $1<e^t<e<3$ e pertanto $1/((n+1)!)<e^t/((n+1)!)<3/((n+1)!)$. La differenza tra le due successioni che incastrano $e^t/((n+1)!)$ è $2/((n+1)!)$, ...

Salve, svolgendo un esercizio mi è venuto un dubbio ad un certo punto dato che è la prima volta che incontro una cosa del genere e non so se sia un errore mio in effetti.
$f(x)=sqrt(|x+1|+x+1)/(x+2)$ il dominio di questa funzione mi viene $AA$$x$$in$$RR:x!=-2$.
procedo ora alla valutazione del modulo, e ottengo questo:
per $|x+1|>=0$ la funzione mi diventa $sqrt(x+1+x+1)/(x+2)$ che fa $sqrt(2x+2)/(x+2)$
quindi nell'intervallo $-1,+oo$ la ...

aiuto! come trovo la serie ti Taylor Mclaurin di questa funzione?
$f(x)= (3x)/(x+2)$ ovviamente è inutile derivare continuamente.. quindi qual'è la strada da seguire?

Ciao ragazzi ho questo limite:
$lim_((x,y) -> 0) (xy)/(x^3+y^9)$
Io ho ragionato così: verifico che lungo le restrizioni immediate il limite esista quindi lungo $f(x,0)=0$, $f(0,y)=0$,$f(x,x)=infty$ (devo già insospettirmi?). Provo a passare in coordinate polari ed ho lo stesso risultato. Posso dire di aver già trovato una curva lungo la quale il limite non esiste e dunque la funzione non è continua? Basta questo?
Stessa questione con $f(x,y)=x^2/(sqrt(x^2+y^2))$.
Ho controllato con varie ...