Scuola
Discussioni su temi che riguardano Scuola della categoria Matematicamente
Didattica della matematica, storia e fondamenti
Temi di didattica, scambi di idee tra insegnanti e aspiranti insegnanti, storia e fondamenti della matematica.
Fisica
La scienza di pallette che cadono e sciatori che muoiono
Matematica - Medie
Sezione dedicata agli studenti delle medie che hanno incubi matematici
Matematica - Superiori
La scienza dei numeri, dei cerchietti e delle imprecazioni
Scervelliamoci un po'
Spazio dedicato a problemi assegnati a gare matematiche o olimpiadi della matematica, o ancora a prove di ammissione a scuole di eccellenza.
Domande e risposte
Ordina per
In evidenza
in un calorimetro contenente 3000 g di acqua la temperatura di quest'ultima passa da 70 °C a 30°C. determina il calore di reazione e indica se si tratta di una reazione esotermica o endotermica.
per questo esercizio ho solo il problema di determinare di che tipo è la reazione. ho trovato il calore che è - 120kcal. so che è endotermica, ma non ho capito bene il motivo. mi aiutate?

prendiamo questo caso semplice, se io volessi trovare la derivata, devo derivare solo le x, giusto? cioè sarebbe la deivata sarebbe $2x+y^2=0$?
perchè tipo stavo pensando ad un problema generico tipo
"trovare l'angolo di incidenza che formano le curve $alpha:y=x^2+x$ e $beta:x^2+y^2+x+y=0$ nei loro punti d'intersezione"
beh la prima cosa è trovare i punti di intersezione
${(y = x^2 + x),(x^2 + y^2 + x + y = 0):}<br />
da cui <br />
${(x=0),(y=0):}U{(x=-1),(y=0):}
quindi deriviamo la parabola e otteniamo ...

ciao allora il problema eè questo:
del triangolo abc sono note le coordinate di A(3;-1) , B(-4;-1) e dell'ortocentro H(3/2; - 3/2). determina le coordinate di C.
da risolvere senza la regola del fascio di rette.
grazie a tutti!

s.o.s!!!!!!!!!!!!!!!!!11qualcuno mi può far capire la trigonometria???:blush:cry:blush

Buonasera a tutti… scusatemi ma avrei un po’ di problemi con questa disequazione goniometrica:
$(sec(2x))/ (tg(2x)-tg(x)) – 1/4(1+cot^2(x))>=0$
dove cot ^2(x) è la cotangente al quadrato dell'angolo incognito. Tre mie “allieve” (non è vero.. sono tre mie amiche a cui ho dato una mano in matematica… ) se la sono trovata in un compito… e in effetti non è per nulla semplice…a meno che io sia così stupido da non vedere un trucchetto… il che è possibile (visto che sono bello esaurito in questo periodo…)… vi dispiace ...

$($sen(2x)-senx$/$ctg^2(2x)-1)

scusate la domanda stupida; se ho una distribuzione unitaria secondo un carattere quantitativo di questo tipo e voglio sapere se c'è asimmetria.
mi calcolo la media aritmetica che è $mu=108,3$ e dopo devo confrontarla con la mediana della distribuzione credo.
l'appunto sulle fotocopie è 108.3>100 $=> $ c'è asimmetria positiva
ma quel 100 cos'è? credo che che l'appunto sia sbagliato e invece la mediana è 95 cioè $M_(e) =(100+90)/2 =95 => mu>M_(e)$ ?
EDIT: ...

1) $y=e^x + 2e^(-x) in [0; log2]$
Lagrange:
- la funzione è continua;
-$y'=e^x-2e^(-x)$
Ora mi risultano antipatiche le sostituzione, in particolare il log...
2) Determinare l'equazione della tangente alla curva di equazione $y=x^3-2ax^2+6a$ nel suo punto di ascissa x=2 e determinare il parametro a in modo che la tangente passi per il punto (0;-2).
[a=1]
P (2;y) -> P (2; 8-2a)
T (0; -2)
$y'=3x^2 - 4ax -> m=12-8a$
Poi sostituendo i valori di P e T in una retta generica y=mx+q, con un ...

Qualcuno mi può aiutare?non ho capito una cosa.....
Come faccio se ho
x(1) = -2x( 2)
data una qualsiasi equazione.....
Es: X (alla seconda) - k( 2-k)x + 6=0
Grazie mille
$y=xsqrt((x-2)/(x-4))$
qualcuno puo seguirmi passo passo nella rappresentazione di questa funzione?
Per prima cosa avrei una domanda per quanto riguarda il dominio: posso portare la x sotto radice e per trovarmi il dominio pongo l'argomento sotto radice maggiore o uguale di zero?? oppure devo lasciarla fuori (la x) e porre solo $(x-2)/(x-4)>=0$?? oppure sono giusti entrambi i metodi?
Grazie.

ho finito di risolvere un problema, ma nn son certo che sia correttissimo in un passaggio, anche se i risultati mi tornano
date le parabole $alpha:y=-1/2x^2+2x+3$ e $beta:y=x^2+8x+12$
det. le equazioni delle tangenti $"r,s"$ ad entrambe le curve.
come prima cosa ho trovato le rette generiche tangenti alle curve
${(-1/2x^2+2x+3),(y=mx+q):}<br />
da cui otteniamo $x^2+x(2m-4)-6+2q
il discriminante $Delta =(2m-4)^2-4(-6+2q)=0$(condizione di tangenza)
${(x^2+8x+12),(y=mx+q):}<br />
da cui otteniamo $x^2+x(8-m)+12-q
il discriminante ...

ciao a tutti... nn riesco a risolvere questo problema tramite il bilancio energetiko.. mi potreste aiutare?
allora il testo dice questo...
"calcolare l'energia necessaria a un satellite ke si muove di moto circolare uniforme attorno la terra a una distanza uguale a 3x il raggio terrestre perch superi per sempre il campo gravitazionale"ovvero trovare la velocità di fuga di questo corpo...
HELP ME PLEASE!

Come si sviluppa:
$(k(n+1))!$
C'é un modo come quello noto: $(n+1)! = (n+1)n!$
Ho cercato un po' in rete ma non trovo nulla sulle proprietà dei fattoriali...
Grazie

Ciao a tutti,
il problema che vi propongo è semplice e si tratta di: determinare le rette tangenti alla circonferenza $x^2+y^2-2x-4y-4=0$ passanti per il punto P(4;8).
Mi ricordo che in terza facevamo come procedimento: retta passante per P è y=mx+q distanza centro circonferenza e retta uguale a raggio poi non mi ricordo più ..... Quindi vorrei chiedervi 2 cose:
A) quale è il metodo da seguire
B) come posso fare a risolverlo con le derivate (io ho pensato che se la derivata è il ...

$tg (45° + x/2) = cos x $
applicando al cos x formule di duplicazione otterrò
$tg (45° +x/2) = 1- 2 sen^2 x$
tenendo conto che tg 45° è 1, come faccio a soddisfare l'equazione?
Ancora non riesco a capirne il procedimento, vi chiedo scusa ma vorrei capire.
soluzione x= k 360°
x= k 360° - 90°

Si consideri il fascio determinato dalle due circonferenze
x^2+y^2-2x+2y-8=0
x^2+y^2-4x-2y=0
1)trovare l'equazione della circonferenza del fascio
a---->tangente alla retta x-2y-4=0
b----->che stacca sulla retta x-y-4=0 una corda di misura 5 radical 2
c----->che interseca gli assi del sistema di riferimento in punti che determinan un quadrilatero la cui area misuri 70.
2)determinare il centro delle circonferenze aventi il raggio di misura 5.

chi mi sa spiegare nella maniera + comprensiva possibile il potenziale elettrico io l'ho letto sul libro ma lo dice troppo genericamente ovvero "l'energia potenziale posseduta dalla carica unitaria in una posizione del campo elettrico" sosa si intende per carica unitaria?
grazie a chi vorrà aiutarmi

Non riesco a spiegarmi perchè queste due funzioni, che dovrebbero essere uguali, hanno dominii diversi...... o forse sono io ad aver sbagliato a calcolare i dominii....
1) y=sqrt(x-3)/sqrt(x-1)
2) y=sqrt[(x-3)/(x-1)]

Con le formule di bisezione la risoluzione di questa equazione ( soluzione x= k360° +-30°):
sin^2 x/2 + radice quadrata di 3 cosx= 8- radice quadrata di 3 il tutto fratto 4
svolgendola ho ottenuto :
sen^2 x/2 - radice quadrata di 3 per sen^2 x/2 + radice quadrata di 3= 8 - radice quadrata di 3 il tutto fratto 4
è corretto lo svolgimento fino ad ora?come si prosegue in tal caso?
grazie per l'attenzione e l'aiuto,
alex

Si consideri il fascio determinato dalle due circonferenze
x^2+y^2-2x+2y-8=0
x^2+y^2-4x-2y=0
1)trovare l'equazione della circonferenza del fascio
a---->tangente alla retta x-2y-4=0
b----->che stacca sulla retta x-y-4=0 una corda di misura 5 radical 2
c----->che interseca gli assi del sistema di riferimento in punti che determinan un quadrilatero la cui area misuri 70.
2)determinare il centro delle circonferenze aventi il raggio di misura 5.