Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
MI aiutate nn riesco a capirlo
Miglior risposta
salve a tutti, c\'è qualcuno che riesce a svolgere questo esercizio e mi spiega come si fa? grazie Per riempire d\'acqua una vasca ci sono 2 rubinetti. Il primo impiega 3 ore, il secondo ne impiega 4. Se vengono aperti contemporaneamente, quanto tempo impiegano a riempire la vasca? A)2 ore e mezza B)1 ora e mezza C)1 ora e quarantacinque minuti
Problema geometriaaaaaa
Miglior risposta
calcola il volume di un parallelepipedo rettangolo a base quadrata avente l'area della superficie totale di 252 dm e lo spigolo di base di 6 dm
Sto cercando di dimostrare che la funzione $f(x,y)=x^\alpha y^{1-\alpha}$, con $0<\alpha<1$ e $x,y\geq 0$ è concava (nel quadrante positivo di $RR^2$).
Inizialmente ho cercato qualche bella disuguaglianza dei numeri reali, tipo quella di Young, ma non mi ha portato fortuna...
Poi sono passato alla forza bruta, calcolando le derivate parziali prime e seconde e cercando gli autovalori della matrice hessiana, ma qui i conti diventano lunghi e davanti all'espressione delle soluzioni ...
Ciao a tutti ho una matrice simmetrica di cui devo calcolare il determinante e il rango. L'unico problema è che per calcolarli devo fare una quantità di conti smisurati e complicati, e quindi mi stavo chiedendo se c'era qualche procedimento per calcolare rango e determinante in modo più semplice per quanto riguarda le matrici simmetriche...
grazie
Aiuto equazioni veloci ma solo bravi in matematica
Miglior risposta
Permutazioni semplici di3*C(x-1,3)=D(x-2,4)
C(x+1,3) = x^3/6 +(-2) separato dal denominatore
1) In quanti modi possiamo scrivere 828 come somma di 40 interi strettamente positivi tutti diversi tra loro? ( due somme contenenti gli stessi addendi in ordine inverso vanno considerate uguali)
2)Una palla di legno piena viene dipinta di rosso e lanciata in aria. Mentre è in aria,un samurai la taglia di netto 30 volte: la sfera rimane così suddivisa in tantissimi pezzi,alcuni dei quali hanno la superficie parzialmente colorata di rosso,gli altri hanno la superficie completamente color ...
Traduzione Frasi Latino-Italiano (Facili) [ENTRO OGGI]
Miglior risposta
Gentilmente potreste tradurmi le seguenti frasi? (Entro oggi :/ )
Verba regis ingrata populo erant
Multas culpas Marius iuventuti tribuit
Italia fluminum et rivorum plena est
Lupus dentibus ossa vorabat
Consules confestim ad urbem veniente
Horae noctis puerorum animos terrent
Imbres hostes impediebant
Terra mare et mare terras terminat
Virgo in conclavi sedet
Animalia in tribus locis sunt: in aere, in aqua, in terra
Nullum animal est sempiternum!
Cives probi ...
qualcuno mi può aiutare in questo esercizio?
Due navi, A e B, salpano alla stessa ora. A naviga verso NO a 24 nodi, mentre B viaggia a 28 nodi in direzione che forma un angolo di 40° verso ovest rispetto a sud. (1 nodo è uguale a 1 miglio marino all'ora, praticamente 0,5 m/s).
Qual è (a) il modulo e (b) la direzione della velocità di A rispetto a B?
(c) Dopo quanto tempo saranno distanti fra loro 160 miglia marine?
(d) Quale sarà in quel momento la direzione del vettore posizione di B rispetto ...
ECONOMIA!
Miglior risposta
Allora,sn in 3^ media e stiamo facendo no stereotipo di economia....
ma nn ho capito la proporzione, dovrebbe essere un roba tipo : capitale:interesse=saggio:tempo o cose così.
Grazie mille a chiunque mi aiuti!
Piccola disequazione help
Miglior risposta
(x^2-4)/log(in base 2 di x+2) minore uguale di 0
AIUTO TRADUZIONE FRAsi LATINO!!
Miglior risposta
Grazie in anticipo :giggle
1 C.marius signum alae dexterae dabat et contra iugurtham,Numidicum dominum,dimicabat
2 fili mi, virorum bona non sunt aeterna!
3 Graeci ac Troiani per novem annos pugnabant et tandem Graeci Troiam expugnabant
4 Neglegentiam vestrorum amicorum intolerandam putabamus
5 syracusis erant armigera praesidia romana
Sono x domani ... non ho capito alcune frasi..
Miglior risposta
1. Vespasianus celerrimas navium frumento onustas mari committit.
2. Semper liberalissimus et munificentissimus fuit.
3. Saluberrimus omnium ventorum aquilo est.
4.celeberrimus fuit in hoc ( questo ) genere Sosus.
5. Nihil honestius et magneficentius est quam pecuniam contemnere.
6. Nero statura fuit prope iusta , gracillimis cruribus.
7. Apud Helvetios longe nobillissimus fuit et ditissimus Orgetorix.
8. Aegris corporibus simillima est animi aegritudo.
please... urgenti!!! :thx
It was... (period of the year/ day)
(say if you were alone or with somebody else)
(describe the place where you were)
(describe what you were doing)
when... (something happened)
(describe the event or the creature that you sae)
(find a suitable ending of the story)
PS: do not tell me that you have to write alone if not, do not ask for help from you, thanks in advance.
dunque dunque .. mi servirebbe una mano su:
$sin3x >= cos^2x-2$
$cos^2x >= sin4x+3 $
e
$cos2x >= sin^2x+2 $
proemio dell'iliade dopo averlo letto devo rispondere a queste domande:
L'ira di Achille. L'ira inizia con il riferimento all' ira di Achille. Rifacendoti alla trama dell'Iliade spiega perchè tale stato d'animo dell'eroe acheo assume tanta rilevanza nel poema. A quali scelte lo porta? Quali conseguenze negative ha il comportamento di Achille?
L'intervento degli dei.Con quali motivi gli dei agiscono? Come si manifesta il loro intervento?
La struttura. distingui nel testo l'invocazione e ...
Ciao a tutti ho l'equazione differenziale: $(e^x+e^(-x))y'=sqrt(1-y^2)(e^x-e^(-x))$ e la riscrivo come:
$dy/(sqrt(1-y^2))= (e^x-e^(-x))/(e^x+e^(-x)) dx$ ovvero $intdy/(sqrt(1-y^2))= int(e^x-e^(-x))/(e^x+e^(-x)) dx$
il primo integrale è uguale a $arcsiny+C$, il secondo lo calcolo per sostituzione ponendo $t=e^x$ e facendo i conti mi esce che è uguale a $ln(1+e^(2x))-x+C $ e si ha:
$arcsiny= ln(1+e^(2x))-x+C $
per cui gli infiniti integrali generali dell'eq. diff. sono:
$y(x)=sin [ln(1+e^(2x))-x+C ]$ però il risultato non si trova con quello del libro ma per poco, cioè deve ...
Ciao a tutti ho un integrale che devo risolverlo per sostituzione solo che non capisco perchè non mi trovo, l'integrale è:
$int 1/(xsqrt(x^2+9))dx$; io l'ho risolto in questo modo:
pongo $x=3 sinh (t)$ da cui segue che $dx=3cosht dt$ e che $t=arcsinh(x/3)$ quindi:
$int (3cosht)/(3 sinht sqrt(9sinh^2t+9))dt=$ $1/3int (cosht)/(sinht sqrt(sinh^2t+1))dt=$ $1/3int (cosht)/(sinht sqrt(cosh^2t-1+1))dt=$
$1/3int (cosht)/(sinht cosht)dt=$ $1/3int 1/sinht dt=$ $1/3int cosech(t) dt$;
moltiplico e divido per $cosech(t)-ctgh (t)$ e si ha:
$1/3int cosech(t) * (cosech(t)-ctgh (t))/(cosech(t)-ctgh (t))dt =$
$=1/3int (cosech^2(t)-ctgh (t)cosech(t))/(cosech(t)-ctgh (t))dt =$ $1/3 ln |cosech(t)-ctgh (t)| +C$
...
in questo esercizio ho V=$RR$[x]
e $B={1,x,x^2,x^3,...}$
sia poi $\partial_n$ la funzione così definita
$\partial_n: P(x) -> (1/n!)P^{(n)}(0)$
mi chiede di mostrare che per ogni n $\partial_n$ appartiene a V*,
di mostrare che $\partial_n$$x^m$=$\delta_(nm)$ (il delta di kronecher)
e infine mostrare che tutte le $\partial_n$ sono linearmente indipendenti
ai primi 2 quesiti ho trovato risposta
del terzo ho la soluzione del professore ma volevo chiedere se la mia ...
Ho la serie della successione $a_{n}$ con le seguenti proprietà:
$\sum_{n=1}^infty a_n$ = +infinito ; $\lim_{n \to \infty}a_n$=0
Posso affermare che :
$a_{n}$ è asintotica alla successione $(1)/(n)$ oppure
$\sum_{n=1}^infty a_n$ $>=$ $\sum_{n=1}^infty (1)/(n)$ ???
Io credo proprio di si poichè se non fosse asintotica alla serie armonica oppure la serie maggiore della sua serie, la serie convergerebbe oppure avrebbe il limite diverso da 0.
Salve ragazzi, chiedo il vostro aiuto, non riesco a dimostrare la proprietà di triangolarità di una funzione da me definita, che mi farebbe dire che essa è un'emimetrica. Di seguito la sua definizione:
Dato un albero, dati $a$, $b$ due nodi dell'albero, dato $c$ il nodo genitore comune ai due nodi $a$ e $b$, definisco la funzione $e$ applicata ai nodi $a$ e $b$ come la distanza (il ...