Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
G3nd4rM31
Buongiorno a tutti, Sto cercando qualche certezza in più sull'esecuzione logica di questo quesito di probabilità, spero possiate aiutarmi. Ci sono 13 dischi con le facce tinte con i seguenti colori: 2 dischi verde e rosso, 3 verde blu, 2 giallo blu, 3 giallo rosso, 1 giallo verde, 2 completamente gialli. A terra è caduto un disco che mostra una faccia gialla, qual è la probabilità che sia uno dei 2 dischi completamente gialli. Il mio risultato è 25%, questo perchè ...
16
15 lug 2020, 16:43

Studente Anonimo
Qual'è il 16-esimo numero della sequenza seguente? \( 1)\ 4\) \( 2)\ 14\) \( 3)\ 194\) \( 4)\ 37634\) \( 5)\ 95799\) \( 6)\ 119121\) \( 7)\ 66179\) \( \vdots \) \( 15)\ 130559 \) \( 16)\ ?? \) Il numero \(131071 \) è primo? Si? No? Come lo avete dedotto?
4
Studente Anonimo
16 lug 2020, 03:50

mary98scc
Se io ho una guscio sferico cavo carico e mi voglio determinare il campo elettrico come posso fare? Qualche input da cui partire.. Io avrei pensato di usare gauss ,ma poi non so come procedere...

mmmmmmaaaaa
Salve a tutta la community, mi e' venuto un dubbio riguardo i logaritmi. Ma se in equazione o disequazione logaritmica, come 2log7(x)-log7|1+x|>-log7|1/x^2-1|, devo risolvere la disequazione quando 1+x e' maggiore di 0, minore e quando 1/x^2-1 e' maggiore e minore di 0?
2
16 lug 2020, 09:26

chiaramc1
Salve, ho il seguente problema che riguarda il moto rettilineo uniformemente accelerato, in particolare il moto di caduta dei gravi. Un uomo in cima ad un grattacielo di $230m$ si sporge e lancia verso il basso una palla con velocità iniziale pari a $10m/s$. Quanto tempo trascorre prima che la palla urti il suolo? In pratica devo calcolare il tempo di caduta, esso ha formula se la velocità iniziale è pari a $0$: tempo di caduta= rad(2s/g). Qui vi è in gioco ...

Bbach
Buonasera, sto studiando l'equazione di d'Alambert con campo scalare in un mezzo omogeneo nel tempo e nello spazio. In particolare il calcolo della green function, ovvero il campo irradiato da una sorgente impulsiva nello spazio e nel tempo: \(\displaystyle (\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}) g(\mathbf{R},\tau)= \delta(\mathbf{R}) \delta(\tau) \) Ovviamente per l'unicità servono anche le condizioni iniziali sulla funzione e sulla derivata prima. Per la risoluzione, il ...
5
28 giu 2020, 22:07

andreacavagna22
Mi è richiesto di calcolare l’integrale di $x^2y$ lungo il triangolo (0,0) (1,2) (2,1) cin la formula di Gauss Green. Io ho pensato di procedere così: Considero il campo $(0, x^3/3 y)$ parametrizzo il segmento (0,0) (2,1) con $(t,1/2 t)$ e faccio integrale di linea con t che varia tra 0 e 2. Parametrizzo il segmento (2,1) (1,2) con $(t, -t+3)$ e integro tra 1 e 2, cambiando di segno. Parametrizzo il segmento (0,0) (1,2) con $(t,2t)$ e integro tra 0 e 1, ...

markAcid
Ciao a tutti, Volevo farvi qualche paio di domande sul Momenti di Inerzia, visto che in sessione di esame mi sono state contestate come inesatte. 1) Ho parlato di Momenti di Inerzia del centro di massa, ma non riesco a capire cosa ci sia di sbagliato nel dire una frase di questo genere. 2) Oltre questo volevo capire come si possa risolvere il seguente esercizio: Sia presa in considerazione un asta omogenealunga 2m che sia inclinata rispetto alla superficie orizzontale di 30 gradi. ...

Mars_ime
Ciao a tutti! Non riesco a capire come risolvere questo esercizio, ci ho provato in mille modi Qualcuno saprebbe darmi qualche suggerimento per giungere alla soluzione? "Due amici, A e B, si sfidano in una gara di corsa sulla distanza di 400m. B parte male, e benché riesca a correre alla stessa velocità di A (8m/s) si ritrova immediatamente con 4 metri di ritardo. B però è in grado di fare un ultimo scatto incrementando la sua velocità a 8.5 m/s. A che distanza dal traguardo, come minimo, ...

Dodecaedro
Qualcuno saprebbe dirmi come si risolvono questi due problemi di fisica?
1
15 lug 2020, 10:46

andreacavagna22
È asseganto $F=(y,z,x)$ chiede di trovare U affinchè U=rot(F), quindi ho $U=1/2(z^2, x^2,y^2)$ mi chiede il lavoro su C di U dove C è $x^2+y^2=1$, $z=0$. Cone posso fare? Ho pensato di usare Stokes, ma non saprei come applicarlo. Potreste aiutarmi Grazie

Nexus991
I teoremi di Koenig ci dicono che, dato un punto O, possiamo scrivere il momento angolare calcolato rispetto a quel punto come: $P_O = r_{CM}$ $\times$ $Mv_{CM} + P'_{CM}$ Nel caso di corpo rigido: $P'_{CM} = I \omega$, come si spiega questo parallelismo? E anche nel caso dell'energia cinetica, il secondo teorema di Koenig ci dice che: $K = K' + \frac{1}{2} M v_{CM}^2 $ Dove, in caso di corpo rigido: $K' = \frac{1}{2} I \omega^2 $ Come si spiega ciò?

andreacavagna22
Salve, avrei un dubbio, nel momento in cui mi è richiesto di determinare i punti di estremo vincolati, con vincolo $g(x)=0$, per la funzione $f$, è necessario, prima di utilizzare la funzione Lagrangiana, ricercare eventuali punti di massimo o minimo interni, con il normale metodo, ovvero imponendo gradiente di f uguale a 0? Grazie Io avrei pensato di ragionare così: se dovesse chiedere, esempio, i punti di massimo/minimo su di una circonferenza, se ho ...

giangianni1
Vorrei chiedere un aiuto su quest'ultimo esercizio. I primi due punti li ho risolti facilmente, però l'ultimo mi incasino un po'. L'unica cosa sensata che mi è venuto in mente era: $(dQ)/(dt)$ lo conosco, quindi: $(dQ)/(dt)=(lambdadm)/dt$ poiché è lineare e abbiamo che il tempo per cui l'elemento dm esca dalla tubatura è $Deltat=560s$, $(dQ)/(lambdadt)*Deltat=dm=rhoSdx$ S lo ricavo. Però ho poi quel dx tra i piedi, infatti stavo considerando nel tratto iniziale avrei che ...

Pemberton!
Buonasera ragazzi. Sono ufficialmente stato messo KO da un dominio bello contorto e complicato. Ci ho ragionato un attimino prima di procedere ma ho veramente troppe domande e devo chiedere a voi come impostare il sistema di condizioni per trovare il campo d'esistenza. $(((log^4)_(arcsen(x))(3+sen(x)))/(arccos(x)+sqrt(2cos(x)-sqrt(2))))^(log(x))$ Non ho la più pallida idea delle condizioni da impostare necessarie e quelle superflue perchè ripetitive e/o da escludere perchè non avrebbero senso.. Sapreste darmi una mano? Vi scrivo qui sotto io cosa ...
7
14 lug 2020, 18:59

oleg.fresi
Ho il seguente algoritmo: #include <bits/stdc++.h> using namespace std; int countWaysUtil(int x, int n, int num) { int val = (x - pow(num, n)); if (val == 0) return 1; if (val < 0) return 0; return countWaysUtil(val, n, num + 1) + countWaysUtil(x, n, num + 1); } int countWays(int x, int n) { return countWaysUtil(x, n, 1); } int main() { int x = 100, n = 2; cout << ...
1
13 lug 2020, 14:23

12aby
Calcola il perimetro di un trapezio isoscele sapendo che la somma e la differenza delle basi sono rispettivamente 160 dm e 44 dm e che il lato obliquo é 1/3 della base maggiore. La risposa deve essere 228 dm Grazie a tutti buone vacanze
4
14 lug 2020, 18:02

Bianco17
Qualche tempo fa, sempre girando tra le prove INdAM, trovai un problema abbastanza interessante a cui non riuscii a trovare più di semplici soluzioni banali e quindi lasciai incompleto... Colgo ora l'occasione di proporvelo assieme alla mia parziale soluzione. Il testo dice: "I tre numeri $30$, $19$, $6$ godono della seguente proprietà, che verrà indicata con (*): (*) i tre numeri sono tutti distinti e la somma di due qualunque di essi è il quadrato di un ...
4
13 lug 2020, 18:24

Giulix_13
1)Nel parallelogramma ABCD la diagonale BD è perpendicolare al lato AD è il perimetro è 98 cm. Si sa inoltre che la differenza tra 1/3 di BD e 1/4 di AD è 2 cm è il lato AB supera la diagonale BD di 8 cm. Determina l’area 2)Nella figura il percorso che va da P a Q è lungo 120 cm. Trova l’area del rettangolo ABCD, sapendo che 5/8 della base superano di 21 cm la metà dell’altezza. qualcuno mi puó spiegare come si svolgono? Grazie mille
1
15 lug 2020, 10:20

Simone Masini
se suddivido gli interi in 10 gruppi ognuno dei quali è formato dai numeri che terminano per 0,1,2,3,4,5,6,7,8,9 come faccio a essere sicuro che i 10 gruppi rappresentano tutti gli interi? ho capito che ci sono di mezzo le classi di resto e quindi i criteri di divisibilità da zero a nove ma non sono riuscito a collegare le cose