Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Salve, non riesco a capire come risolvere questo quesito:
Data la conica:
$x^2-6xy+ky^2+2x+k=0$,
Trovare i valori di k per i quali il centro della conica si trova nel punto $C(2,1)$
Grazie in anticipo!

Ciao a tutti,
come ho già detto nella presentazione sono una studentessa di architettura, quindi capite bene che non sono una cime di matematica . Vi scrivo per chiedervi una mano su un problema che mi sono trovata ad affrontare per un'esercitazione per l'esame di costruzioni: devo costruire una cupola di 80cm di diametro che sia smontabile/pieghevole/... in modo da poter stare in un scatola di 60dmc. L'idea per la mia cupola sarebbe di fare spirale con i tappetini da esercizi della decathlon, ...

Salve a tutti sto provando a capire le serie di potenze ma trovo qualche impiccio , per esempio:
Ho una serie $ sum_(n =1 \ldots) ^oo [log(log3n)]x^n $ centrata in $x0=0$.
Il raggio di convergenza è $ lim_(n ->oo ) sqrt[log(log3n)]=1 $.
Ne segue che la serie converge puntualmente in $[-1;1]$. Perchè? Come fa a stabilire che converge puntualmente in questo intervallo?

vi posto come ho svolto il seguente esercizio, vorrei sapere se secondo voi è corretto perché alla fine vengono dei calcoli in cui è necessaria la calcolatrice e probabilmente all'esame ci sarà proibito utilizzarla, quindi vi chiedo c'è qualche errore nei calcoli a qualcosa che mi sfugge?
l'esercizio è $z^4+(1-2i)z^2-2i=0$ pongo $z^2=u$ e ottengo $u^2+(1-2i)u-2i=0$ da cui
$u_(1,2)= ((2i-1)+-sqrt[1+4i^2-4i+8i])/2$ da cui $u_(1,2)= ((2i-1)+-sqrt[1+4i^2+4i])/2$ che ci porta a
$u_(1,2)= ((2i-1)+-sqrt[(1+2i)^2])/2$ e a $u_(1,2)= (2i-1)+- (1+2i)/2$ con ...
2^2x7:[5x6:5-(3^5:3^4x5-3^3:3-2^3:2)]:7= RISULTATO=1

Potete per favore aiutarmi in questi esercizi? sono in alto mare non so dove mettere mano:
a)2 fratto log in base 1/2 di x-1 < log in base 1/2 di x fratto -log in base 2 di -1;
b)2 log in base √3 di x-1)] < log in base √9 di (3-x) + 2
Ciao ragazzi volevo chiedervi una mano a risolvere questo esercizio di algebra lineare:
Determinare la dimensione e una base dello spazio vettoriale V=L(1,A,A^2,A^3) generato in M2R dalle matrici:
1 0 0 1
L ( 0 1) A=( -1 0) A^2 A^3
Quante e quali sono le basi B di V tali che B (contenuto){1,A,A^2,A^3}?
Se B0 è una di queste basi quali sono le coordinat della matrice C= 1+ A^2 + A^3 rispetto alla base B0?
In attesa di risposta vi ringrazio sin d'ora

{[(8^3)^2x(8^2)^4: (8^3)^4]x9^2:6^2}^2:[3^4x(5x3-48:2^3-7)^4]=

Salve a tutti, vorrei chiedervi aiuto per questo esercizio sul calcolo del massimo e minimo di una funzione vincolata.
La funzione ed il suo dominio è la seguente:
$ f(x,y)=y-x^3, D={(x,y) in R^2: |x|-1<= y<=1-|x|} $
Data la continuità della funzione, e dato che il dominio è chiuso e limitato, siamo certi per il teorema di Weierstrass che il massimo ed il minimo esistono, e si troveranno o all'interno del dominio o sul bordo.
Provando a calcolarli all'interno del dominio (annullando il gradiente) troviamo che:
...

Ecco un esercizio che ho provato a svolgere ma che non mi da risultato:
"Fissato un sistema di riferimento cartesiano nello spazio si considerino i piani:
$\alpha:x+y=0$ e $\beta:2y+z+2=0$
$i)$ si determinino le equazioni delle rette $r_1$ ed $r_2$ contenute nel piano $\alpha$, parallele a $\beta$ e aventi distanza $sqrt(5)$ da $\beta$.
$ii)$ si determinino le equazioni delle rette $s_1$ ed ...

Espressioni con potenze (95678)
Miglior risposta
{[16/81 : (2/3)^2]^3 x (5/2)^6}^2 : (5/3)^10
{[(125/27)^2 x (4/25)^3]^4:[(1/9 x 4) x 2/3]^5} : (2/3)^8
{[(1/4)^2 x (2/5)^2]^3 : [(-1/5)^2]^3} x [(2/3)^6 : (-1/3)^6]
RISOLVERE QUESTE ESPRESSIONI UTITILLANDO LE PROPRIETà DELLE POTENZE

Ciao ragazzi, mi trovo a dover fronteggiare un problema piuttosto banale ma a cui non riesco venirne a capo.
Come risolvo la seguente disequazione a numeri complessi?
(13)^(1/2)*|z+6i| < 1
e anche questa, del tutto analoga a meno di un "alla seconda".
(13)^(1/2)*|z+6i|^2 < 1
Scusatemi per la scrittura, ma non so come poterlo scrivere con i "simboli" idonei. (non è lunga, spero sia comprensibile )
Grazie mille per le vostre risposte e la vostra disponibilità...

Ciao a tutti..
oggi mi sono imbattuto nel seguente problema, che nel mio libro è dato come corollario. E' così ovvio? Lo chiedo a voi.
Consideriamo $\Omega \subset \mathbb{R}^N$ aperto e $f \in BV(\Omega)$. Sappiamo che ogni derivata parziale $i$-esima di $f$ si rappresenta con una misura (con segno) reale $\mu_i$, quindi di fatto abbiamo un vettore di misure $(\mu_1, ..., \mu_N)$. E' così ovvio che esistano una misura di Radon positiva $\mu$ e una ...

Salve a tutti, sono bloccato su questa equazioni differenziale... non riesco ad esplicitare la soluzione..
$y'=(y(1+y^2))/(t)*y$
Per risolverla dovrei fare:
$int dy/(y^2(1+x^2))=int 1/t dt$
$int 1/y^2-int 1/(1+x^2)dy=log|t|+c$
$-1/y-arctan(y)=log|t|+c$
Però arrivato a questo punto non so andare avanti...

Fisica problemi urti obliqui
Miglior risposta
Mi aiutate con questo problema per favore?
Una piccola biglia di massa m urta elasticamente al centro una lastra rettangolare disposta con il lato più lungo perpendicolare al piano d'appoggio. La lastra, di massa M, è vincolata a muoversi orizzontalmente appoggiata su un piano orizzontale. L'angolo di incidenza vale 60° e l'angolo di riflessione 45°.La velocità iniziale della biglia è v=10,0m\s e l'impulso trasferito alla lastra è I=1,36kg x m\s. Calcola il valore della massa m.(trascura ...
Introduzione barbosa:
L'esericizio che riporto di seguito è abbastanza standard -tanto che si trova come esercizio d'esempio durante l'esposizione della teoria del puro rotolamento-; tuttavia mi sono preoccupato di complicarlo un po'. Probabilmente mi sto perdendo in bicchiere d'acqua, ma mi piacerebbe rifletterci con qualcuno.
Un cilindro di raggio R/4 rotola senza strisciare dentro una guida di raggio R. Nella metà di destra della guida l'attrito è nullo. Se all'istante iniziale ...
salve a tutti, sto preparando l'esame di matematica due e non riesco a capire i passaggi per effettuare il cambiamento di coordinate negli integrali doppi, e passare a coordinate polari.
generalmente l'angono theta riesco a capirlo dal grafico, ma che passaggi devo fare per calcolarlo?
per rendere la spiegazione più semplice vi propongo un esempio.
$D= \{ x,y \in RR^2 | x^2+y^2+2x < 0 ; x^2+y^2>1 \}$
so che: $ { ( x=rhocosTheta ),( y= rhosenTheta ):} $
l'angolo $theta$ io lo calcolo mettendo a sistema le due circonferenze, ma ...
Aiuto problema di fisica!!!
Miglior risposta
C'è un problema di fisica su forze ed equilibrio dei solidi che non riesco a capire:
"Una molla di costante elastica k=250 N/m tiene in equilibrio su un piano, inclinato di 45° rispetto al piano orizzontale, un corpo di peso 50 N. Di quanto si è allungata la molla se il coefficiente di attrito vale 0.5?"
Mi potreste aiutare per piacere?
Vetro surriscaldato esplode?
Miglior risposta
Una bottiglia di vetro surriscaldata contenente un fluido esplode se agitata?

Sia data l'applicazione lineare f(x,y,z) =(2x-y+3z,y+7z,2kz) dove k è un parametro.
a) Si stabilisca per quali valori del parametro f è un isomorfismo.
b) Si determinino il polinomio caratteristico e gli autovalori per f.
c) Si stabilisca per quali valori di k l'applicazione f è diagonalizzabile.
Ho calcolato il rango della matrice associata, da cui il rango è tre per k diverso da zero, quindi è un isomorfismo per k diverso da zero. Gli autovalori sono 1, 2 , 2k , quindi è diagonalizzabile per ...