Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Ciao a tutti.
Chi mi aiuta a dimostrare che:
data una matrice $A in K^(mxn)$, essa è invertibile se e solo se il suo determinante è non nullo, ovvero:
$EE A^(-1)|A*A^(-1)=1_n <=> det(A)!=0$

Ciao a tutti, mi sto esercitando sugli integrali tripli. Però in questo esercizio non riesco a mettere a posto il dominio dell'insieme. Aiutatemi per favore. Qualche suggerimento.. almeno sull'impostazione del dominio..
Grazie in anticipo.
Calcolare $ \int_ A (xz) dxdydz $
ove $ A=\{((x),(y),(z)) \in RR^3| 0\leqx, z\leq 1, 0\leq y\leq 7\sqrt(x-z^2)\} $
ho pensato di fare così cioè di impostare il dominio (l'ho pensato in diversi modi, ma secondo me sono fuori strada)
da qui $ y\leq 7 \sqrt(x-z^2)\to y/7\leq \sqrt(x-z^2)\to x-z^2\geq (y^2)/(49) \to$
$ \to x-z^2\geq (y^2)/(49)\to x-(y^2)/(49)-z^2\ge0 $
che però NON so che figura sia.. ...

ragazzi ho bisogno di una mano per la risoluzione del seguente esercizio. Determinare inferiore e superiore e, se esistono min e max dell'insieme A
$ A={(n+2*(-1)^n)/(n+3),n in mathbb(Z) } $
chiedo scusa per eventuali errori di digitazione ma è il mio primo topic in questo forum

Ciao, amici! Nei Fondamenti della Geometria di Hilbert trovo la seguente affermazione a proposito di quelle che vengono assiomaticamente definite rotazioni, che sono trasformazioni biunivoche continue* di $\mathbb{R}^2$ in sé:Se c'è una rotazione intorno al punto $M$ per la quale un punto arbitrariamente prossimo al punto $A$ può venire portato in un punto arbitrariamente prossimo ad \(A'\), c'è sempre anche una rotazione intorno ad ...

ciao,
ho scritto un programmino che lancia $2$ dadi,uno dopo l'altro, $36000$ volte ...e stampa le occorrenze dei valori ottenuti...valori che, dati $2$ dadi a $6$ facce per uno, restituiscono ovviamente un valore nell'intervallo $[2,16]$..
ho un dubbio...non mi stampa tutte le occorrenze! Il 12 non esce mai su 36000 lanci!??!
ecco il mio codice:
#include <stdio.h>
#include <stdlib.h>
#define ...

Ciao a tutti, non riesco a capire un passaggio di un esercizio che dice: Calcola la derivata della funzione:
\( f(x,y)= x^2y-e^x+^y \)
(non sono riuscito a mettere anche il + all'esponente perché non ho capito come fare, ma l'esponente di e è (x+y)
lungo la direzione \( v=(1/2, \sqrt{3}/2 ) \)
si ha: \( g(t)=f(x+\frac{t}{2}, y+\frac{\sqrt{3}}{2}t)=(x+\frac{t}{2})^2(y+\frac{\sqrt{3}}{2}t)-e\exp({x+y+t(1/2+\sqrt{3}/2)} )\)
(dove exp dopo e è tutto l'esponente di e)
il prossimo passaggio ...

Ciao ragazzi ,
è da un po di tempo che ho affiancato ad Ingegneria un costante studio della Matematica e sono sorti parecchi dubbi.
Scelto un punto materiale in movimento rispetto ad un certo sistema di riferimento cartesiano fissato,mi hanno insegnato che la velocità è un vettore applicato istante per istante al punto materiale stesso.Non dovrebbe essere applicata nell' origine del sistema di riferimento?

L'esercizio è il seguente :
Calcolare $int int int_E 1/(x^2 + y^2 + z^2)^3 dxdydz$
con $E={ (x,y,z) in RR^3 : x^2 + y^2 + z^2 <=4 , x>=0 , y <=0 , z>=sqrt3}$
La funzione integranda suggerisce un cambio in coordinate sferiche poichè $\rho^2 = x^2 + y^2 + z^2$ , pertanto
$\{(x = \rho cos\theta sen\phi ),(y = \rho sen\theta sen\phi),(z = \rho cos\phi):}$
e imponendo le condizioni iniziali ottengo $\rho <= 2$
$\{(x = \rho cos\theta sen\phi >= 0),(y = \rho sen\theta sen\phi <=0 ),(z = \rho cos\phi >= sqrt3):}$
quindi $2 cos\phi >= sqrt3 hArr cos\phi >= \frac{sqrt3}{2} hArr -frac{pi}{6} <= \phi <= frac{pi}{6}$
$\rho sen\theta sen\phi <= \rho cos\theta sen\phi hArr sen\theta <= cos\theta hArr -frac{3pi}{4} <= \theta <= frac{pi}{4} $ ,
( anche se "ad occhio" $\theta$ avrebbe dovuto variare tra $-frac{pi}{2}$ e $0$, poichè l'ottante di sfera
tagliato dal piano ...

Ciao a tutti!!
mi sono incartata su questo integrale...ho provato e riprovato ma niente da fare!
$ int (x^2-3)/(x^3+4x) dx $
ho provato a distribuire
$ int x/(x^2+4)dx-int 3/(x^3+4x) dx $
e così so risolvere il primo integrale...ma non il secondo!
si accettano suggerimenti!!! grazie!!

Salve ragazzi,
Sto ripassando questi concetti cercando di interiorizzarli bene utilizzando il Lang "Algebra Lineare" che avevo a casa. Avrei bisogno di un po' di conferme:
Definizione Dato uno spazio vettoriale \(V\) di dimensione finita e due sottospazi \(W, U \subseteq V \). Si dice che \(V\) è somma diretta di \(W\) e \(U\) se e solo se:
[list=1]
[*:2uepjazo] \(W + U = V\)[/*:m:2uepjazo]
[*:2uepjazo]\( W \cap U = ...

Due triangoli vengono detti “dello stesso tipo” se sono entrambi acuti, retti, od ottusi.
Sia $n$ un intero positivo, e sia $P$ un poligono regolare di $n$ lati. Ad ogni vertice di $P$ si trova esattamente un piccione. Un cacciatore di passaggio disturba i volatili, che volano via. Quando ritorna, esattamente un piccione si trova su ogni vertice di $P$, non necessariamente nella sua posizione originaria.
Trovare ...
Ciao a tutti ragazzi!
Vi scrivo per un problemino di Fisica che mi sono trovato ad affrontare questa mattina e che non riesco a capire.
Premetto che ho iniziato lo studio della Fisica solo da qualche giorno e che, facendolo per passione e da auto-didatta, non ho nessuna figura al quale chiedere delucidazioni ovvie. Spero possiate venirmi in aiuto, il problema è il seguente:
"Un'escursione nel deserto"
Una carovana di escursionisti percorre nel deserto 50,5 km in direzione Sud-Est fino a ...

Salve a tutti... è un po' che mi chiedo come dimostro che il vettore derivata di una curva data dalla funzione $ phi:RR->RR^2 $ è tangente alla curva stessa... mi è stato detto che non c'è una dimostrazione ma la tangenza si ha per definizione. Il mio interrogativo quindi è da cosa è nato il concetto di derivata... cioè per quale scopo è stato creato...
Nelle poche letture che ho trovato sembra sia nata da un'esigenza fisica di mettere in relazione una quantità con il suo "tasso di ...
Ciao a tutti,
data la seguente funzione: $f(x,y)=sqrt(x^2-y^2)$
il dominio naturale è il seguente insieme $D={(x,y)\inR^2 : x<=-y \text{ o } x>=y}$, giusto??
(praticamente il grafico sotto le due bisettrici)
Inoltre se ho un unione numerabile di chiusi posso dire che è anch'essa chiusa?
Grazie mille per le eventuali risposte

... in ambito del primo principio della termodinamica,
- se un sistema assorbe calore esso si espande, Q é positivo e il lavoro compiuto anche;
- se un sistema cede calore esso si comprime, Q é negativo e anche L;
?

Buonasera a tutti,
ho riscontrato difficoltà nella risoluzione di un problema di fluidodinamica allegato in foto. Io ho supposto la presenza di una spinta sulla paratoia (nel trattino inclinato) dell'acqua che ho indicato con F1 ed una spinta F2 nel tratto verticale sempre dovuta ad h3. Di queste so calcolarmi i relativi moduli per cui non ho problemi. Tuttavia ho molti dubbi nel capire nella parte superiore quali sono le spinte dovute all'aria. A me viene da pensare che ci sia una spinta sul ...

Buon giorno a tutti ho un file in gedit con una lista di queste sequenze tutte diverse.
40067-01-07-00
40067-01-08-01
96050-02-03-05
56008-06-08-06
ogni sequenza è una specifica cartella con all'interno diversi file tra cui total.pds. Quello che dovrebbe fare il programma è:
1) leggere la sequenza dal file di gedit
2) aprire le cartelle corrispondenti alla lista
3) estrarre i file total.pds
4) scriverlo tramite
ls total.pds > @intervallo.lis
in un file ...

Ho difficoltà con questo problema
Si calcoli il commutatore di $[A,B]$ con $A=X^2+Y$, $B=X^2-Y$ , $[X,Y]=i$
Svolgendo i calcoli trovo alla fine $ 2(YXX-XXY)$, non posso raccogliere $X$ dato che non so se e come commuta e quindi non so cosa fare. Spero rispondiate almeno a questa domanda, grazie

salve, $(sqrt3-sqrt2)^2+sqrt6(5+sqrt6)$
$sqrt9-2sqrt6+sqrt4+sqrt6(5sqrt+6)$
va bene fin qui?
come si svolge questo esercizio
Sia $f : S to T $ una applicazione; si dimostri che $ f(X1 nn X2) sube f(X1) nn f(X2) $ ma in generale non
vale l'uguaglianza