Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
fahrenheit1
Ho svolto questo esercizio di elettrodinamica, tuttavia la soluzione mi sembra strana. Una spira conduttrice di forma quadrata contenente una resistenza $R$ è libera di traslare nel piano $x y$ di un sistema di riferimento cartesiano ortogonale $(x, y, z)$. I lati di lunghezza $l$ vengono mantenuti paralleli all'asse $x$ ed all'asse $y$. La spira interseca la regione $x, y \geq 0$ in cui è ...

SteezyMenchi
Salve a tutti. Mi stavo rinfrescando le idee facendo alcuni esercizi di algebra lineare. In pratica l'esercizio è questo: Si consideri un’applicazione lineare $T : R^3 \rarr R^2$ tale che: $T|(1,-1,0)| = |(1,1)|; T|(1,-1,1)|=|(-1,-1)|; T|(-1,0,1)|=|(2,2)|$ i) Spiegare per quale ragione l’applicazione lineare T definita dalle precedenti condizioni è unica. ii) Determinare la matrice associata a $T$ nelle basi canoniche di $R^3$ e $ R^2$ iii) Determinare poi equazioni cartesiane dell’immagine di ...

SCARPELLOSANTO
(12/5 + 1/3 - 1/4 . 8/3 -2):(3/8 - 1/16 - 1/4)=(4/5 + 3/4 . 16/9):X
2
17 set 2022, 15:26

SteezyMenchi
Salve a tutti. Stavo provando a svolgere un vecchio esercizio d'esame e sto avendo qualche problema. L'esercizio è il seguente: Si considerino i seguenti sottospazi vettoriali di $CC^4$: $U = Span{(1,0,0,1),(1,i,2i,-2),(2i,-1,-2,-i)}$ e $V = \{(z_1-iz_2+z_4=0),(z_3+iz_4=0):}$ (i) Determinare una base per entrambi i sottospazi. (ii) Determinare un insieme minimale di equazioni cartesiane per $U \nn V$ (iii) Determinare la dimensione di $U+V$ Il primo punto dovrei aver fatto tutto bene (non indico i procedimenti ...

ariete132
I centri di due sfere, rispettivamente di raggio 7,2cm e 4,7cm si trovano a una distanza di 33cm. Le sfere hanno una distribuzione di carica uniforme, la loro carica total è 55microC e la forza con cui si respingono è pari a 0,75N. Qual è la densità di carica superficiale su ogni sfera?

alBABInetto
Sera Vorrei capire come svolgere questo integrale: $int_0^pi sin^2(y)cos(y)dy$ Ho provato varie sostituzioni ma mi ritrovo sempre con estremi poco validi. Come si fa

dan952
Senza usare la calcolatrice determinare chi è più grande tra $\sqrt{2-\sqrt{2}}$ e $\pi/4$
8
14 set 2022, 16:41

Jenniferrrr_3
Ragaaa aiutoo Miglior risposta
Ilaria e Lorenzo spingono la loro auto in panne verso l’officina in fondo della via.Si pongono a una distanza di 1,10 m ed esercitano 2 forze nella stessa direzione e nello stesso verso .La forza risultante è di 420 N e il suo punto di applicazione dista 0.60 m da Ilaria. -Calcola i moduli delle forze esercitate da Ilaria e Lorenzo
1
15 set 2022, 19:18

Jenniferrrr_3
Ilaria e Lorenzo spingono la loro auto in panne verso l officina in fondo della via.Si pongono a una distanza di 1,10 m ed esercitano 2 forze nella stessa direzione e nello stesso verso .La forza risultante è di 420 N e il suo punto di applicazione dista 0.60 m da Ilaria. -Calcola i moduli delle forze esercitate da Ilaria e Lorenzo
1
15 set 2022, 19:18

GuidoFretti1
Buongiorno, non riesco a risolvere questo esercizio nel caso particolare in cui $p=+infty$ sia $g:X->CC$ una funzione misurabile su $X$ e quasi ovunque finita e sia $D_(infty)={f in L^(infty)(mu) | g(x)f(x) in L^(infty)(mu)}$ Mostrare che $AA f in L^(infty)(mu)$ esiste ${f_n} sube D_(infty)$ tale che $f_n -> f$ in $L^(infty)(mu)$ se $g in L^(infty)(mu)$ provo a mettere in breve il mio tentativo: $AA n in NN$ sia $E_n:={x| |g(x)|<=n}$ che è ben definito perchè $g in L^(infty)(mu)$ e sia $f_n=f*1(E_n)$, ...
4
15 set 2022, 14:23

FibratoTangente
Buona sera. L'esercizio chiede di calcolare le curve integrali del seguente campo vettoriale \[ X = ay\frac{d}{dx}+bx\frac{d}{dy} \] nel caso in cui \(ab

cozzaciccio
Salve a tutti, studiando i radar ad onda continua da un libro, mi sono accorto che per definire l'equazione radar per i radar CW usa la seguente formula definendola come l'equazione dei radar nel caso generale: $SNR = (P_av*T*G^2*(\lambda)^2*(\sigma))/((4\pi)^3*R^4*k*T_0*F*L)$ Il mio dubbio riguarda il $T$ al numeratore in quanto nell'equazione radar generale per come mi è stata spiegata a lezione è uguale a quella che ho inserito fatta eccezione proprio per quel $T$ che non capisco perchè si trovi lì e cosa ...
6
4 set 2022, 20:03

dan952
Trovare tutti i numeri interi positivi $n$ tali che $a^{n+1} \equiv a \mod n$ Per ogni $a \in \mathbb{Z}//n\mathbb{Z}$
9
14 set 2022, 16:44

Angus1956
Sia $KsubeCC$ un campo di numeri. Si dimostri che se $A,HinM_n(K)$ sono matrici simili allora $dim_K{BinM_n(K)| AB=BA}=dim_K{BinM_n(K)| HB=BH}$. Io ho pensato così: siccome $A,H$ sono simili rappresentano lo stesso endomorfismo $f$ rispetto a basi diverse $B_1$ e $B_2$. Quindi intanto mi procuro una base di endomorfismi ${g_1,...,g_n}$ che commutano con $f$ e da qui mi calcolo le matrici $M_(B_1)(g_i)$ e $M_(B_2)(g_i)$ con ...
6
12 set 2022, 20:03

marco2132k
Ciao. Il mio libro definisce un fibrato vettoriale locale (nel seguito, un fibrato) come il prodotto \( V\times F \) di un aperto \( V \) di \( \mathbb R^n \) con uno spazio vettoriale (reale, di dimensione finita) \( F \). Definisce poi un isomorfismo di fibrati come una funzione \( \alpha\colon V_1\times F_1\to V_2\times F_2 \) di classe \( C^\infty \) tale che \( \alpha(x,\eta) = (\alpha_1(x),\alpha_2(x)\circ \eta) \) per due funzioni \( \alpha_1\colon V_1\to V_2 \) e \( \alpha_2\colon V\to ...

Maione11
Salve ragazzi, ho provato a svolgere questo esercizio ma conoscendo i valori di k non riesco comunque a capire come si traduce la funzione di densità di probabilità attraverso questo semplice grafico: mi dice di determinare k e P(X), consigli su come leggere il grafico per risolvere questo quesito? Grazie in anticipo per la risposta.
49
12 set 2022, 11:56

Maione11
Salve ragazzi, sto provando a svolgere questo esercizio: Uno studente che deve sostenere un esame impiega 30 minuti per andare da casa all'università. Egli parte da casa alle 15.30 per stare in aula alle 16.00, ma non sa che il suo orologio non è preciso, in quanto presenta un ritardo (rispetto all'orario effettivo) aleatorio avente distribuzione normale con m=σ=1 minuti. Calcolare la probabilità che egli arrivi in ritardo e la probabilità che arrivi puntuale. Applicando la formula mi trovo ...
86
11 set 2022, 22:57

Angus1956
Sia $A = (a_{i,j}) ∈ M_n(RR)$ e si assuma che esistano $b_1, . . . , b_n > 0$ tali che $b_ia_{i,j} = b_ja_{j,i}$ per ogni $i, j$. Dimostrare che $A$ è diagonalizzabile. Avevo pensato a ricondurmi alla matrice con coefficienti $b_ia_{i,j}$ che è simmetrica e quindi diagonalizzabile. Poi non so se da questo posso dimostrare che $A$ è diagonalizzabile.
7
13 set 2022, 18:33

Angus1956
Metto tre esercizi di cui vi lascio la mie soluzioni ditemi se sono giuste: Primo esercizio: a) Siccome la matrice è simmetrica è reale è diagonalizzabile per il teorema spettrale e poichè è nilpotente l'unica matrice diagonale nilpotente è la matrice nulla che è simile solo a se stessa e quindi $A=0$. c)Sia $vinKerA^2$ e sia $<,>$ il prodotto scalare standard allora $<Av,Av> =v^tA^TAv=-v^TA^2v=0$ poiche il prodotto scalare standard è definito positivo ...
26
14 set 2022, 13:11

Lebesgue
Ciao a tutti, ho alcuni dubbi su questi quozienti di spazi topologici, in particolare mi basta capire intuitivamente che spazi sono: 1) $RR^2 // S^1$ Questo direi che rimane un $RR^2$, ma non ne sono troppo sicuro... ho il dubbio che possa essere un $RR^2$ tangente ad una sfera $S^2$ nell'origine 2) $RR^2 // \{x^2+y^2\ge1\}$ Questo qui dire che viene proprio la sfera $S^2$ 3) $RR^2 // \{x^2+y^2> 1\} $ Con questo invece ho dei problemi... non è sicuro un ...
7
14 set 2022, 13:17