Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Mate (202006)
Miglior risposta
disegna in un diagramma cartesiano i grafici delle seguenti funzioni di proporzionalità quadratica
y=4x alla seconda

Ho un dubbio su questo problema sul piano inclinato:
Un corpo è trascinato a velocità costante da una forza $F$su un piano inclinato di $30°$.il coefficiente di attrito tra il corpo è il piano è $0.4$ e la massa $7.3kg$. calcolare il modulo della forza F
sul corpo sono quindi applicate tre forze : la forza F la componente parallela della forza peso e la forza di attrito
la forza di attrito è uguale a $26N$ mentre la componente ...

Aiutooo per favoreee in Matematicaaa?
Miglior risposta
Data la parabola di equazione y=x²-3x+2, determina l'equazione della retta tangente nel suo punto di ascissa -1.
Risultato y=-5x+1
Buonasera devo fare l'esame di analisi 2 e mi sono imbattuto in questo esercizio:
$ { (( y*(x-1)^3)/((x-1)^2 +y^2)+a rArr per (x;y)!=(1;0)) , (b rArr per (x;y)=(1;0)):} $
Mi chiede di determinare se esistono "a" e "b" tali che la funzione sia continua.
Io ho cercato di risolverlo dunque con il limite $ lim_((x;y) -> (0;0)) ( y*(x-1)^3)/((x-1)^2 +y^2)+a =f(1;0) $ con f(1;0) che è ovviamente = b
Risolvendo il limite con le coordinate polari mi viene praticamente alla fine che a=b
Ok sara anche a=b ma a quale valore numerico corrisponde? Come faccio? vi ringrazio!!!
Sto calcolando l'ordine di infinito della seguente funzione
la soluzione dell'eserciziario è
mentre io,
avendo due grandi termini [tex](1-cos(\frac{1}{x}))[/tex] (che $\rightarrow 0$) e [tex](1+x^3)[/tex] (che $\rightarrow \infty$)
ho deciso di applicare Hopital
[tex]\frac{(1-cos(\frac{1}{x}))}{\frac{1}{(1+x^3)}}=\frac{\frac{-sin(\frac{1}{x})}{x^2}}{\frac{-3}{x^4}}=sin(\frac{1}{x})\frac{x^2}{3}[/tex]
il che è ben diverso dal risultato ottenuto dall'eserciziario
P.S. mamma mia quanto vengono ...

$\lim_{n \to \infty}(logn+3n^3logn)/(2^(1/n) +n^5) = +oo/oo$
procedo con la gerarchia degli infiniti, quindi ho gia semplificando i termini di grado massimo
$\lim_{n \to \infty}(logn/n^3+3logn)/(n^2*(2^(1/n)/n^5 +1)) $
da qui ottengo
$\lim_{n \to \infty}(oo/oo + oo)/(oo*(1/oo +1)) =(0 + oo)/oo = oo/oo = 0 $
per l'ulitmo $oo/oo$ ho considerato il confronto tra infiniti, ovvero essendo che al denominatore l'infinito è dato da una potenza n^2 e il numeratore da dei logaritmi, sapendo che logx

Salve ho alcuni quesiti sull'esame degli ofa con relative risposte corrette che non riesco a capire, li trovate in allegato come foto. ( le risposte corrette sono quelle segnate con una X ):

ciao ragazzi idea di questa dimostrazione è proprio quella di portarci nel caso unidimensionale per fare questo
basta che prendo una curva di n dimensioni in una variabile
$\gamma(t)={x_1+th_1,x_2+th_2,...,x_n+th_n}$ con $t in [0,1] $
dopo di che considero la funzione F(t)=f(x+th) sempre intesa come vettore
considerata questa funzione applico lo sviluppo di taylor in zero avendo che
$F(1)=F(0)+F'(0)+F''(\delta)/2$
il dubbio mi viene quando calcolo la derivata prima di F(t) cioè la derivata di $f(\gamma(t))$ da quando ...

ciao.
ho un certo problema in meccanica. Il testo è quello di Mauro Fabrizio II edizione 1994. Alle pagine 20-21 descrive il moto elicoidale. I dubbi che incontro sono:
1) cosa s'intende con "una curva che incontra le generatrici del cilindro sempre sotto lo stesso angolo"? (la parte sottolineata è la parte oscura). Io ho interpretato questo con il fatto che le tangenti nei vari punti sono sempre le stesse
2) quando viene sviluppata l'equazione del moto del punto $P-O$, l'autore ...

L'isola del tesoro
“Su un’isola ci sono due alberi, A e B,
e i resti di una forca.
Partendo dalla forca contate il numero
di passi necessari per raggiungere
l’albero A camminando in linea retta.
Arrivati all’albero, giratevi di 90 gradi
a sinistra e procedete per lo stesso
numero di passi.
Nel punto in cui vi siete fermati
piantate là un bastone nel terreno.
Tornate alla forca e camminate in linea
retta fino all’albero B contando i passi.
Raggiunto l’albero, voltatevi di 90 gradi
verso destra ...

ciao a tutti... ho due sottili lamine concentriche sferiche. sulla lamina piu interna ho una densita planare di carica uniforme $\sigma$ mentre tra le lamine ho una densita volumetricadi carica anch'essa uniforme $\rho$ . i campi elettrici sono dati e devo calcolare l'energia elettrostatica. i miei dubbi sono:
1)l'energia puo essere calcolata integrando su una superficie la densita di energia o vale solo se integro su volume?
2)se alla domanda 1 la risposta è no, ho ...
Ciao a tutti!
ho questa serie $ sum_(n = 0)^(+oo) e^(-nx)/(n+1) $
e dovrei trovare insieme di convergenza e somma.
Calcolando il $ lim_(n -> +oo) e^(-nx)/(n+1) $ ottengo $ e^(-x) $
quindi l'insieme di convergenza è $ [0,+oo) $
Per calcolare la somma invece non riesco a capire come procedere..qualcuno mi può aiutare?Grazie.

Salve,
Volevo avevo un quesito da sottoporvi:
Nel caso della dinamica di un punto materiale ha senso considerare il momento della quantità di moto di un punto materiale P rispetto ad O? Se il momento delle quantità di moto è 'connesso alla rotazione' quando applico una forza ad un punto materiale, questo può solo traslare e non ruotare attorno ad un polo fisso?
Perchè poi nel caso di un sistema $S$ di punti materiali per descrivere il suo moto, se $S$ rigido, ...

Forse come esercizio sarà stupido, ma non riesco a venirne a capo
Sia X uno spazio topologico. S $ sube $ X e i: S -> X l'inclusione.
Supponiamo che S sia dotato di una topologia che soddisfa la seguente prop:
Per ogni spazio Y e ogni applicazione f: Y->S
f è continua se e solo se if: Y-> X è continua
dimostrare che la topologia di S è la topologia indotta dalla top. di X
Sarà la stanchezza ma non ci riesco a proprio a far vedere che gli aperti di S che soddisfano la condizione, ...

salve a tutti, sto cercando di preparare l'esame di fondamenti di informatica e sfogliando dei vecchi compiti mi sono imbattuto in questa domanda:
si consideri una rappresentazione di numeri in complemento a due su 16 bit e sia $ gamma = 1000 $. siano $ gamma chi $ due stringhe a 16 bit. quali delle seguenti risulta vera a proposito del numero $ z: z = chi/gamma $ ?
a) $ z $ risulta uguale a 0 se $ chi < 16 $
b) l'operazione che porta al calcolo di $ z $ non ...

Sia $f: [0,+oo) -> [0,+oo)$ una funzione concava tale che $f(0)=0$.
Dimostrare che $f$ è sub-additiva.
Definizioni: una funzione $f: I ->RR$ ($I sube RR$ intervallo) è detta
1) concava se per ogni $a, b in I$ e per ogni $lambda in (0,1)$ vale $f(lambda a +(1-lambda)b)>= lambda f(a) +(1-lambda)f(b)$
2) sub-additiva se per ogni $a,b in I$ vale $f(a+b)<=f(a)+f(b)$

Ciao Ragazzi,
sto impazzendo alla ricerca di una soluzione a questo dilemma:
Limite x,y in 0,0 ; per quali valori di Lambda il limite esiste ed è finito?
[1-cos(x^3 y^(L-1))]/[x^2+y^2]
Pensavo di utilizzare le coordinate polari, ma con il parametro come mi comporto?
Avreste la pazienza di postarmi i passaggi?
grazie mille
Al

Salve! Ho calcolato il campo $E$, ma ho difficoltà con il calcolo del potenziale (punto b,c) in questo esercizio:
Si ha una distribuzione di carica a simmetria sferica. La densità è uniforme e pari a r0 (nota) per
r2R.
a) Determinare r1, sapendo che il campo è nullo per r>2R.
b) Assumendo nullo il potenziale all’infinito, calcolarlo per ogni valore di r e mostrarne
l’andamento con un grafico cartesiano.
Una carica q di massa m viene ...

Salve a tutti. Avrei un dubbio che proprio non riesco a risolvere.
Praticamente ho:
E(x)=5 e VAR(x)=9
E(Y)=10 e VAR(y)=16
COV(xy)=3
Devo individuare la distribuzione di V= X-2Y e calcolare il primo decile.
Io mi blocco sulla varianza perchè il valore atteso di V dovrebbe essere E(x)-2E(y)=-15.
Attendo un vostro aiuto che dopodomani ho un esame importante!
Grazie!!

Riuscireste a determinare tutti gli omomorfismi di $ ZZ mod 6 rightarrow ZZ mod 4 $ uno è quello banale che associa ad ogni elemento di $ ZZ mod 6 $ l elemento 0. Un altra associa ai termini pari di $ ZZ mod 6 $ 0 e ai termini dispari 1