Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Ciao avrei questo esercizio da risolvere:
Sia $ L={(x,y,z)€R^3: x^2+y^2=1, x+y+z=0, z>=0} $ . Calcolare $ int_(L)xdx+ydy+zdz $ .
Ora, io non so proprio come iniziare, perché non so come comportarmi con il dominio di integrazione, dato che non ho mai fatto un esercizio del genere. Con i domini di integrazione ci ho lavorato per quanto riguarda gli integrali doppi o tripli, lì so come lavorarci, ma qui non ne ho idea.. qualcuno può aiutarmi?

Sul libro c'è scritto che esiste una successione di punti di X-{x} convergente ad x, dove x è un punto di accumulazione per X.
Perché è necessario ipotizzare che x non appartenga ad X?

Click sull'immagine per visualizzare l'originale
Ragazzi avrei un dubbio... intanto quando devo calcolare l'ascissa del centro di massa?? Quando è necessario e come si calcola esattamente?
Secondo dubbio.. guardate questo esercizio:
Un sistema costituito da un asse è capace di oscillare attorno ad un asse fisso passante per il suo punto O. L'asta due è disposta perpendicolarmente alla prima e fissata nel suo centro. Inizialmente è in condizioni di equilibrio il ...

Salve scusate se è banale come domanda, ma noto su internet che alcuni esercizi usano:
$ (X-\barX)/(S/\sqrtn) $
come statistica distribuita secondo la t di student anche nel caso in cui $X$ non sia distribuita gaussianamente. Cioè il numeratore di quella statistica è gaussiano in virtù del TLC, ma il denominatore non è distribuito secondo una chi quadro nel caso in cui $X$ abbia una distribuzione qualunque. Mi illuminate su questo problema?

Ciao a tutti ragazzi a breve ho un esame e sto riscontrando problemi con la termodinamica, di preciso con il seguente esercizio:
Due moli di gas perfetto biatomico eseguono un ciclo reversibile ABCA, con AB isoterma, BC isobara e CA adiabatica. Sapendo che Pc= 0,3 atm, Vb= 500l e Vc=200l, calcolare il calore scambiato, il lavoro compiuto e la variazione di entropia del gas in ciascuna trasformazione e il rendimento del ciclo.
Ho problemi di impostazione, non so da dove cominciare, gli ...

Buon pomeriggio! Ho delle difficoltà nell'affrontare questo esercizio:
"Sia $V$ uno spazio vettoriale reale di dimensione finita e sia $varphi in PS(V)$ un prodotto scalare non degenere su V. Sia $f in End(V)$ e sia $W sub V$ un sottospazio f-invariante. Indichiamo con $f^(*)$ l'aggiunta di f rispetto a $varphi$. Dimostare che:
1) $(W)^(bot)$ è $f^(*)$-invariante
2) il polinomio caratteristico di $f^(*)$ ,ristretto a ...

Salve! Ho tentato di dimostrare che $(ZZ_/(8ZZ))^*$$~=ZZ_/2$x $ZZ_/2$
Ho ragionato in questo caso. La cardinalità del primo è uguale a $phi(8)=4$, dunque può essere isomorfo a $ZZ_/4$ o a $ZZ_/2$x $ZZ_/2$. Studiando gli elementi del gruppo si vede che esso ha solo elementi di ordine 1 o 2, dunque posso concludere.
C'è qualcosa che non va?

Buonasera...propongo questo problema che mi sta mettendo un po' in difficoltà.
Caratterizzare gli $n in NN$ tali che in $ZZ_/n$ ci siano nilpotenti.
Avevo pensato di discriminare i casi, ad esempio n primo o potenza di primi. E magari mi potrebbe aiutare il piccolo teorema di Fermat. Qualche aiutino?

Ciao a tutti, ho difficoltà con il seguente integrale
$I=\int_{0}^{\infty}\delta(sen(\pix))*2^{-x}dx$
dove $\delta(b(x))$, con $b(x)=sen(\pix)$, è la delta di Dirac.
Vi riporto il procedimento seguito.
Data $b(x)=sen(\pix)=0 \Leftrightarrow x=x_{k}=k \in \mathbb{Z}$
La derivo una volta, ottenendo $(b(x))'=\picos(\pix)$
$|(b'(x_{k}))|=|\pi(-1)^k|=\pi$
$\delta(sen(\pix))={1}/{|(b'(x_{k}))|}\sum_{k \in \mathbb{Z}}\delta(x-x_{k})$
quindi l'integrale diventa
$\int_{0}^{\infty}{1}/{\pi}\sum_{k \in \mathbb{Z}}\delta(x-x_{k})2^{-x}dx$
Poi non capisco come continuare.
Il risultato finale del professore è $I={3}/{2\pi}$
Potete, per favore, aiutarmi ad arrivare al risultato?
Scrivete la lista dei primi 2005 numeri interi : 1, 2, 3,….,
2005. Cancellate i primi due e scrivete la loro somma alla
fine della lista: 3,4, …, 2005, 3. Continuate così,
cancellando i primi due rimasti e riportando la loro somma
alla fine della lista: 5, 6, … 2005, 3, 7. Non stancatevi :
continuate allo stesso modo finche vi rimane un solo
numero.
Qual è la somma di tutti i numeri scritti, compresi
quelli iniziali?

Ciao a tutti, qualcuno sà se esiste una formula per calcolare la probabilità di somma di variabili aleatorie?
Ho un esercizio del genere:
Calcolare $ P(X+Y=3) $ e $ P(Y<=X) $ , con X variabile di Bernoulli di parametro p, e Y Binomiale di parametri (5,p)
Conosco la formula per risolverla nel caso fossero state di Poisson, ma di Bernoulli+Binomiale non ne ho idea.
Grazie a chi risponde

Calcolare una base spettrale per l’endomorfismo f :$R^3$ → $R^3$
definito ponendo f(x, y, z) = (x + (6 − 7)y + (7 + 2)z,(7 + 2)y, x + (6 + 2)y + (7 + 2)z)
per ogni (x, y, z) ∈ $R^3$
BASE SPETTRALE ={(−7 − 2, 0, 1),(−6 − 2, 1, −6 − 1),(1, 0, 1)}
Ho calcolato:
$f(x,y,z) = (x-y+9z, 9y, x+8y+9z)$
Trasformato in matrice:
$ ( ( 1 , -1 , 9 ),( 0 , 9 , 0 ),( 1 , 8 , 9 ) ) $
Calcolato gli autovalori
$ ( ( 1-\lambda , -1 , 9 ),( 0 , 9-\lambda , 0 ),( 1 , 8 ,9-\lambda) ) $
Det = $(1-\lambda)*(9-\lambda)*(9-\lambda)-(9*(9-\lambda)) =$
$\lambda_1 = 0$
$\lambda_2 = 9$
$\lambda_3 = 10$
Sostituisco ...

Salve ragazzi, qui altri 3 problemini di cui non sono sicuro della risoluzione
Un lungo filo rettilineo conduce una corrente linearmente decrescente nel tempo. Che direzione e verso ha il campo elettrico indotto all’esterno del filo?
a) Parallelo e concorde alla corrente
b) Radiale ed uscente dal filo
c) Radiale ed entrante nel filo
d) Il campo elettrico è nullo
Qui pensavo la a) ma non ne sono sicurissimo
Una molla metallica viene utilizzata come solenoide. Basta stirarla un poco ...


Ciao ragazzi, sto studiando il calcolo integrale e ho dei dubbi riguardo la scomposizione in fratti semplici e riguardo all'utilizzo della regola di Hermite.
Per quanto riguarda la prima, non ho ben capito come procedere nel caso in cui avessi a che fare con un polinomio non scomponibile di molteplicità algebrica maggiore di 1. Ad esempio come scompongo la frazione:
$1/(x^2+1)^2$ ?
Io farei:
$(Ax+B)/(x^2+1) + (Cx+D)/(x^2+1)^2$
È corretto?
Invece, per quanto concerne Hermite, sempre nel caso in cui a che ...
Salve a tutti, mi trovo per la prima volta alle prese con una funzione definita a tratti di questo tipo ; poichè fino ad ora avevo avuto a che fare soltanto con funzioni definite in un modo ovunque tranne al più in un singolo punto.
$ f(x,y)={ ( x+y ifx>0 ),( x+ye^{-x^2} if x<=0 ):} $ e devo Studiare continuità e differenziabilità. Io ho proceduto nel seguente modo. Ovviamente sui due rami singoli entrambe le funzioni sono continue e differenziabili. Il problema sorge nei punti del tipo $ (0,l) $ .
...

Ciao a tutti, è la prima volta che affronto un esercizio di diagonalizzazione con i parametri, questo è l'esercizio:
" Si consideri, al variare di $k$ in $RR$, l’endomorfismo $f : R_2[x] →R_2[x]$ definito da:$ a_0 + a_1x + a_2x^2 → (k + 1)a_0 + 2ka_1 −(a_0 + ka_1)x + (a_1 −ka_0)x^2$ . Devo determina i valori di k per i quali l'endomorfismo è diagonalizzabile.
Innanzitutto ho individuato il polinomio ...

Ciaooo..
$\int (log (sqrt (2x+1))/(sqrt (2x+1))- (log (sqrt (2x+1))/(sqrt (2x+1)))$
Ho provato a risolverlo cosi:
$1/2\int (log (2x+1)+\int (1/(sqrt (2x+1)) - [1/2 \int log ( 2x+1)+\int (1/(sqrt (2x+1))]$
Quindi
$1/2\int log (2x+1)+(log|sqrt2x+1|)-[1/2\int log (2x+1)+(log|sqrt2x+1|)]+C $
Dove l'integrale del log si può integrare per parti e risolvendo viene solo $c $
Secondo voi?
Consigli??? Grazie
Salve, ho dei dubbi su un esercizio di un urto tra una pallina( cioè un punto materiale) e un disco.
In particolare il dubbio sta nel calcolare il momento angolare finale(dopo l'urto) del sistema, rispetto al centro di massa del sistema(cioè avendo scelto come polo il centro di massa del sistema).
Un disco non vincolato (cioè non vincolato a ruotare intorno ad un asse fisso) fermo su un piano orizzontale senza
attrito viene urtato tangenzialmente da una pallina (punto materiale) che vi ...

Consideriamo due urne A e B di cui:
A contiene 7 palline rosse e 3 palline nere
B contiene 5 palline rosse e 2 palline nere
Si sceglie a caso una delle due urne ( P(A)=P(B)=1/2 ) e si estrae una pallina.
Supponiamo che si estragga una pallina rossa, qual è la probabilità che provenga da A?
(Risultato: 44/99)