Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Data la struttura riportata in Figura 1 si richiede di:
1 risolvere la struttura reticolare con il metodo dei nodi
2 costruire una tabella in cui per ogni asta si indica lo stato di sforzo e se l’asta è tirante o puntone
3 progettare e verificare l’elemento teso maggiormente sollecitato assumendo come materiale acciaio (si trascuri nel calcolo il tipo di collegamento)
Per il calcolo porre la forza F=50 kN. Ipotizzare per la maglia quadrata esterna della struttura reticolare lato L=1.5 ...
Buongiorno,
vorrei controllare la soluzione di questo esercizio con il testo proposto dal professore.
Il testo dice”dato il triangolo di vertici A(8,3) B(-4,-2) C(7,4) determina l’equazione della retta CH relativa alla base AB e l’equazione della mediana BH.
Per il primo pezzo nessun problema.
Per il secondo pezzo il professore indica come risultato questo
$3x-23y-34=0$
La mediana è quel segmento che collega il vertice opposto al punto medio del lato considerato
A quel punto l’equazione ...
Buonasera, scusate il disturbo...
Stavo facendo un problema, il quale mi dava la velocità angolare in rad/min da convertire a rad/s. Ci ho provato però non riesco a trovarmi con il risultato, quindi deduco che il mio procedimento sia sbagliato... Qualcuno sarebbe così gentile da potermi illustrare il procedimento per eseguire la conversione?

Ciao, sto cercando di implementare la radice quadrata intera (in base $2^32$) per i big_int attraverso [url=https://it.wikipedia.org/wiki/Metodi_per_il_calcolo_della_radice_quadrata#Calcolo_della_radice_quadrata_di_un_intero:_algoritmo_di_Bombelli]l'algoritmo di Bombelli[/url] che ho così provato a formalizzare:
Nella seguente schematizzazione con $INT$ mi riferisco alla radice intera.
[size=120] \(\sqrt{\underbrace{xx}_{n_1}\ \underbrace{xx}_{n_2}\ ...\ ...

Ho trovato su un test di matematica la seguente cosa:
$ lim (x-> x_o^-) f(x) = 0^+ $
Adesso, premesso che so cosa significa fare il limite da destra o da sinistra, non mi è chiaro cosa questo significhi nel risultato, nel quale non mi sembra che quel "+" abbia molto senso.
Qualche idea?

Buonasera, rieccomi con un nuovo problema. Dopo aver trovato le reazioni vincolari della seguente struttura, sto facendo i diagrammi delle sollecitazioni. Sul tratto \(\displaystyle BC \), non riesco a ricavarmi l'equazione del taglio e del momento per un dubbio banale. Tagliando in \(\displaystyle BC \) e guardando verso sinistra (con il taglio positivo verso il basso) il carico puntuale \(\displaystyle q \) per cosa va moltiplicato? Io inizialmente avevo pensato a \(\displaystyle ...

Data una funzione $f(x)$ definita e continua in un intervallo chiuso e limitato $[a,b]$ e derivabile in ogni punto interno di tale intervallo, è vero quanto segue?
Se $f'(x)>0$ (risp. $f'(x)<0$) in un intorno destro di $a$, allora $a$ è un punto di min. relativo (risp. max. relativo).
Se $f'(x)>0$ (risp. $f'(x)<0$) in un intorno sinistro di $b$, allora $b$ è un punto di max. relativo ...

Buon pomeriggio,
vorrei chiedervi una mano per risolvere il seguente esercizio:
TESTO:
Una pallina di massa $m$ e di dimensioni trascurabili cade da un'altezza $h = 1 m$, e urta un disco omogeneo di raggio $R = 30 cm$ e massa $M = 10 kg$. Il disco è imperniato su un asse orizzontale passante per il suo centro ed è inizialmente fermo. La pallina urtando il disco rallenta istantaneamente e rimane attaccata al perimetro. Sapendo che il modulo della velocità ...

Buongiorno,
vorrei farvi una domanda riguardo i momenti d'inerzia e gli assi rispetto ai quali si calcolano.
Dato un corpo rigido, se io calcolo il suo momento d'inerzia rispetto a un asse posso poi utilizzare il teorema di Huygens-Steiner per calcolare il momento d'inerzia rispetto a un asse parallelo al primo senza ricorrere nuovamente al calcolo integrale.
Esiste una forma più generale che mi permetta di calcolare il momento d'inerzia rispetto a un asse ottenuto per rotazione del primo, ...

Buonasera!
Vorrei chiedervi una conferma riguardo la seguente domanda a risposta multipla:
TESTO:
Consideriamo due biglie di ugual massa $m$, appese a due fili ideali di massa trascurabile. Una biglia si muove con velocità orizzontale $vecv_o$ in modulo pari a $v_0$ contro l'altra biglia che è inizialmente ferma. Nell'ipotesi di urto elastico e trattando le biglie come due punti materiali
a) Si conserva solo la loro energia cinetica, ma non la quantità di ...

Buon pomeriggio avrei un dubbio sui spazi affini, praticamente mi si chiede di elencare e dimostrare le proprietà dei sottospazi affini.
In primo luogo parlo di cos'è uno spazio affine le sue proprietà e cosa lo differisce da quello vettoriale, dopodiché parlo del suo relativo sottospazio con le sue proprietà:
1) chiuso rispetto alla somma;
2) non necessariamente contenere il vettore nullo.
Adesso la mia domanda basta tutto questo oppure devo elencare/dimostrare altro ?

Ciao a tutti/e
Premetto che non so quasi nulla di matematica, sono una sarta e devo disegnare un modello di gonna a ruota, in pratica un cerchio con un buco in mezzo. Dentro al cerchio devo disegnare 1 o più spirali logaritmiche. So che si può usare un Graphic Functions Calculator, ma bisogna scrivere le funzioni, e io non so come farlo! Qualcuno può aiutarmi?
Salve. Facendo lo studio del segno della derivata di una funzione ottengo la disequazione 4ln(x^2)+8>0.
Ora se io porto l'esponente fuori dal logaritmo ottengo il risultato x>e^-1; mentre se lo lascio nel logaritmo ottengo xe^-1. Ho quindi 2 risultati differenti
Ma portare l'esponente dell'argomento fuori dal logaritmo non dovrebbe essere un'operazione assolutamente lecita??
Pensandoci però anche il dominio delle due diseguaglianze è diverso.
Grazie in anticipo
Salve a tutti, sto risolvendo un problema di fisica 2 e avrei bisogno di una mano, il testo è il seguente:
Una sfera non conduttrice di raggio $R_1$ è uniformemente carica nel suo volume, con carica totale $Q_1 < 0$, e riempie senza intercapedini una sfera cava conduttrice, ad essa omocentrica, carica negativamente, di raggio esterno $R_2 = 16R_1$. La struttura metallica ha la stessa quantità di carica $Q2 = Q1$ della sfera non conduttrice interna.
Il primo ...

Sto svolgendo questo esercizio
Il primo punto mi chiede l'energia dissipata nell'urto
L'ho impostata così $\Delta E_M=U_f+K_f-U_i-K_i$, l'energia potenziale appena prima e appena dopo l'urto è la stessa, dunque si riduce a $\Delta E_M=K_f-K_i$,
$K_i$ me la ricavo facilmente dalla conservazione dell'energia meccanica PRIMA dell'urto, infatti impostandola viene fuori $K=\Delta U=mg(h_{CM}-L/2 \cos\theta)$
Ma per $K_f$ non ho idee, al più posso supporre che è tutta rotazionale, dunque ...
Rieccomi purtroppo. Mi sto soffermando sulla parte di trigonometria
perdonatemi ma qui devo iniziare dalle basi pian piano.
Allora il testo dice calcola il valore delle seguenti espressioni:
$sin30°-(tan45°+cos60°)$
direi di trasformare i gradi in radianti (poi non so se serva) e tangente come rapporto tra seno e coseno
$sin(pi/6)-((sin(pi/4)/cos(pi/4) + cos(pi/3))$
a questo punto devo ricavare i valori di seno e coseno in corrispondenza degli angoli utilizzando la tabella oppure dovrei ricavarli tutti a mano sfruttando le ...

Buongiorno,
retta r: 2y−4=z e x-2=z
piano α: 2 x + 2 y + z = 0
Trovata intersezione punto Q agilmente in (0,1-2).
Trasformo r in forma parametrica con z=t ed ottengo vettore direzione v(1;1/2;1)
n (α) =(2,2,1) Vettore normale al piano alfa.
Come faccio a trovare il pianoβ contenente retta r ed ortogonale a piano α?

Un metro di 0.223 kg sta fermo appoggiato a una sfera liscia e al pavimento scabro. La sfera ha un diametro di 23.7 cm ed è fissata al pavimento. L'angolo che il metro forma con l'orizzontale è 29°. Quanto vale il modulo della forza di attrito esercitata sul metro dal pavimento?
A) 2.58 N B) 1.74 N C) 1.01 N D) 1.38 N
Immagino bisogna partire dalle condizioni di equilibrio, quindi guardare la risultante delle forze e dei momenti torcenti, ma da lì come ricaviamo la forza di attrito?