Università

Discussioni su temi che riguardano Università della categoria Matematicamente

Algebra, logica, teoria dei numeri e matematica discreta

Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.

Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Analisi Numerica e Ricerca Operativa

Discussioni su Analisi Numerica e Ricerca Operativa

Analisi superiore

Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.

Fisica, Fisica Matematica, Fisica applicata, Astronomia

Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica

Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Informatica

Discussioni su argomenti di Informatica

Ingegneria

Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum

Matematica per l'Economia e per le Scienze Naturali

Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali

Pensare un po' di più

Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.

Statistica e Probabilità

Questioni di statistica, calcolo delle probabilità, calcolo combinatorio


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
ludovica.sarandrea
Buongiorno, ho il seguente esercizio: "Sia $A={(x,y) \in mathbb{R^2}:y>x-7, x^2+y^3≤2}$ è un boreliano." La prima e unica cosa che mi viene in mente è di mostrare che abbia una forma del tipo (a,b) o [a,b) o [a,b] o (a,b] (ovviamente è in due dimensioni non in una) ma non so né se sia corretto né come farlo
19
23 gen 2020, 12:07

Studente Anonimo
Per quale ragione una forza costante è di sicuro una forza conservativa?
11
Studente Anonimo
26 gen 2020, 22:29

mklplo751
Salve, dopo queste vacanze (auguri di buon anno), ho ripreso a cercare di dimostrare le generalizzazioni che ho provato a trarre da i teoremi base dei limiti. Ora su questa dimostrazione ho ancora più dubbi della precedente e il teorema che ho provato a generalizzare (sperando senza fare errori) è il teorema di permanenza del segno. In breve ciò che ho provato a dimostrare è questo: "Sia $f:(X,\tau_1)->(Y, \tau_2)$ una funzione tra spazi topologici. Sia $(Y,\tau_2)$ uno spazio di Hausdorff su cui è ...
22
4 gen 2020, 17:18

monica_n
Buonasera a tutti! Ho qualche difficoltà con il seguente esercizio: $ P=( ( 0 , 0 , 1 , 0 , 0 , 0 , 0 ),( 0 , 0 , 0 , 5/6 , 1/6 , 0 , 0 ),( 1 , 0 , 0 , 0 , 0 , 0 , 0 ),( 0 , 0 , 0 , 1/2 , 1/2 , 0, 0 ),( 0 , 1 , 0 , 0 , 0 , 0 , 0 ),( 0 , 1/3 , 1/3 , 0 , 0 , 0 , 1/3 ),( 0 , 0 , 0 , 0 , 2/3, 0 , 1/3)) $ matrice di transizione della CdM $ (X_n)_(nin N) $ con insieme degli stati I={1, 2, 3, ..., 7} e legge iniziale $ mu _0=(1/4,0,0,0,1/4,1/2,0) $ Mi chiede di: 1)Classificare gli stati e trovarne il periodo 2)Calcolare tutte le leggi invarianti 3)Determinare la legge di $T_2$ tempo del 1° ingresso in 2 4) Calcolare $ E_6[T_2|T_2< $ infinito] 5) Determinare il $ lim P(X_1=7, X_n=X_(n+1)) $ per n che tende ad ...
1
26 gen 2020, 20:09

Dragonlord
Ciao raga. Ho queste 5 opzioni: - New York - Toronto - Londra - Manila -Sydney Devo scegliere quale escludere delle 5. Ad occhio ho detto Manila, salvo poi ricordare che è la capitale delle Filippine mentre io pensavo ad altro. In ogni caso la risposta corretta è proprio Manila. Quale può essere un ragionamento logico che mi porta ad escluderla dalle altre opzioni? Va bene un esempio qualsiasi. Purtroppo non riesco ad arrivarci!

Fisicaintesta
Ciao ragazzi, ho bisogno del vostro aiuto. Potete risolvermi questo problema, spiegandomi passaggio per passaggio? Vi ringrazio in anticipo. Un galleggiante di volume V= 60.0 cm(cubi) e di densità p= 0.100 g/cm(cubi) è parzialmente immerso in acqua marina (pa = 1.03 g/cm cubi) per sostenere piombo, amo ed esca. Questi ultimi tre hanno massa totale M e possono essere considerati di volume trascurabile. La porzione di volume del galleggiante immersa in acqua è pari a V = 20 cm cubi. L'esca è ...

Simo15STI
Salve, qualcuno ha idea su come risolvere i seguenti esercizi? -Se possibile, scrivere le equazioni di due coniche distinte tali che la loro intersezione sia costituita da tutti e soli i punti dell’asse X. Altrimenti, motivare il perché. -Se possibile, scrivere l’equazione di un’ellisse immaginaria che passi per l’origine O(0, 0). Altrimenti, motivare il perché. Grazie.
6
26 gen 2020, 12:06

Fuoricorso96
Un manubrio è costituito da una sbarra di lunghezza L=120cm e due masse fissate ai suoi estremi m1=1.8 kg e m2 = 600 g . La sbarra è incernierata a un asse passante per il suo centro C e perpendicolare al piano verticale ed è libera di ruotare senza attrito intorno a tale asse . Inizialmente la massa m1 si trova in alto. Ad un certo istante a causa di una piccola spinta, il manubrio inizia a ruotare . 1)Calcolate la velocità angolare della sbarra nel momento in cui la massa m1 passa dal punto ...

nicoglori
Buonasera a tutti, come da titolo propongo un problema di calorimetria che non sono sicuro di aver svolto bene. Di seguito il testo: All’interno di un recipiente adiabatico vengono posti in contatto termico un blocco di ghiaccio alla temperatura t1=0 °C e un blocco di rame alla temperatura t2=95 °C. Quando si raggiunge l’equilibrio termico, una parte di ghiaccio, di massa $\Delta$m, si è sciolta. Sapendo che la capacità termica del blocco di rame è Crame=6*10^3 J/K e che il calore ...

orsoulx
Sia $ AD $ il diametro di una circonferenza $ gamma$; $ E $ un punto qualsiasi di una delle due semicirconferenze, $ B $ e $C $ due punti appartenenti all'altra semicirconferenza. Dimostrare che se i lati del pentagono $ ABCDE $ (convesso o intrecciato) hanno tutti misura razionale in una opportuna unità di misura, allora anche la misura di $ bar {AD} $ è razionale a meno che il pentagono sia degenere. Ciao
3
22 gen 2020, 15:14

federico.panelli
Nel determinare il segno degli autovalori della matrice $ A_t=( ( t+2 , 3 , -t ),( 3 , 2t+1 , -7),( -t , -7 , 12 ) ) $ , al variare di $ t in R $ , il suggerimento: "per $ t=2 $, il determinante della matrice è nullo" in cosa potrebbe aiutarmi? Nel caso particolare con t = 2, trovo quindi velocemente il polinomio caratteristico e gli autovalori di $ A_t $, che sono $ 0 $ , $ (21+sqrt(177))/2 $ , $ (21-sqrt(177))/2 $, quindi uno nullo e due positivi. Non penso che ricavarmi il polinomio ...

patinhojunior
salve,un aiuto su questo limite $ lim_(x -> -1^+) ( (2x^3), (x^2-1) ) $ non capisco perche il risultato dia piu infinito,visto che se -1+ è un pò piu grande di 1,esempio 1.01,-1,01 al quadrato diventa +1,02,quindi +1.02-1 dovrebbe fare 0+,ed al numeratore visto che esce -2 dovrebbe fare -infinito...non riesco a capire grazie

robin112233
Salve a tutti. Avendo una funzione di trasferimento : $ W(s)=(5000*(s-0.1))/((s+1)(s^2+20s+1000) $ dopo che ho tracciato il diagramma di bode l'esercizio mi chiede di utilizzarlo per calcolare la risposta del sistema all'ingresso : $ u(t)=5+3cos(10t+pi/4)+100sin(1000t+pi) $ Applico il principio di sovrapposizione degli effetti considerando un ingresso alla volta ma non capisco come calcolare la risposta del sistema basandomi sul diagramma di bode. Grazie
8
25 gen 2020, 17:43

Studente Anonimo
Sia \( (\Omega,\mathcal{F},P)\) uno spazio di probabilità, una variabile aleatoria mi viene definita come una funzione \( X : \Omega \to \mathbb{R} \) tale che \( \forall x \in \mathbb{R} \) \( \{ X \leq x \} = \{ \omega \in \Omega : X(\omega) \leq x \} \in \mathcal{F} \). Sia \(F \) la funzione di ripartizione di \(X \), abbiamo che \(X \) e \(D_F:= \{ x \in \mathbb{R} : F(x)- F(x-)>0 \} \) i punti di discontinuità di \(F \). La definizione che mi hanno dato di variabile aleatoria discreta è ...
3
Studente Anonimo
26 gen 2020, 21:10

domenico.migl
Secondo voi può essere così? Una spira circolare di raggio $r =1 cm $ e resistenza $R= 2 Omega$ è immersa in un campo magnetico $B$ uniforme, diretto parallelamente all’asse della spira e di modulo variabile nel tempo con la legge $B=B_0 e^(-t)$ con$ B_0 = 1 T$. Determinare la corrente indotta sulla spira quando il campo $B$ vale $B_0/2$. Il flusso che attraversa la spira è: $Phi(B)=B*Sigma=B_0e^(-t)Sigma$ Per la legge di Faraday-Nemann-Lenz ...

Studente Anonimo
C'è un modo "ovvio" per trovare le soluzioni del sistema \[J \dot{u} + c \alpha |u|^{\alpha -2 } u = 0 \quad (*) \]dove \(c>0\), \( \alpha > 1 \), \( u=u(t) \in C^1 (\mathbb{R}; \mathbb{R}^{2N}) \) e \(J \) è la matrice simplettica? Nel libro si dice più volte che \( u(t) = \cos( \omega t)\xi + \sin(\omega t) J \xi \) con \( \xi \in \mathbb{R}^{2N}\) risolve \( (*)\), ma come ci si arriva?
13
Studente Anonimo
25 gen 2020, 21:34

Studente Anonimo
Avrei una domanda di curiosità. Mi stavo domandando se il ragionamento qui sotto è giusto o sbagliato. A me sembra giusto, ma contemporaneamente mi sembra troppo forte concludere che \( f= g \). Dove sta il mio errore, se c'è ? Supponiamo di avere due funzioni, \(f,g\) che a priori sono diverse, con le seguenti proprietà: 1) entrambe olomorfe e definite a priori su \( \mathbb{C}\setminus \mathbb{N} \) 2) \( \left| f(z) \right| \to 0 \) e \(\left| g(z) \right| \to 0 \) quando \( \left| \Im(z) ...
3
Studente Anonimo
20 gen 2020, 20:35

Ciuccaaa
Buongiorno, dovrei chiedere dei chiarimenti su questo esercizio. Grazie mille! Per $t<0$ la tensione in ingresso è zero quindi il diodo non conduce, il condensatore rimane scarico e la tensione di uscita è zero. Quando poi l'ingresso diventa $5V$ il diodo inizia a condurre e il condensatore si carica con legge esponenziale $0,7*e^((-t/(\tau))$. Per calcolarmi la $\tau$ il diodo che è rappresentabile come un generatore di tensione $V_{\gamma}$ si ...
12
27 gen 2020, 09:50

lorenzo1234567
Buonasera, in un esercizio a risposta multipla mi viene data la matrice associata ad un endomorfismo e devo dire se è diagonalizzabile, se non è perchè ad esempio l'autospazio ha dimensione diversa dalla molteplicità algebrica ecc. In generale come posso essere risolti senza calcolare gli autovalori e gli autospazi? Abbiamo circa 1 minuto e mezzo a domanda e non è fattibile (visto che a volte ce ne sono anche 2 di questo tipo) riuscire a calcolare gli zeri del polinomio caratteristico di quarto ...

mobley
Mi scuso per l'eventuale banalità della domanda ma sto cercando in biblioteca su vari testi e non ho trovato nulla finora che mi confermasse o smentisse questo dubbio: se ho una v.a. $X$ con una certa distribuzione e definita su un certo intervallo, la v. inversa $X^(-1)$ avrà la medesima distribuzione e risulterà definita sul medesimo intervallo? Il motivo si ricollega al post precedente, perchè nel calcolo del valore atteso di $W=(X+Y)/X$ la soluzione ...
5
24 gen 2020, 15:11