Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Sia
\[
\forall n\in\mathbb{N}_{\geq2},\,J_n=\begin{pmatrix}
1 & 1 & \dotsc & 1\\
1 & \ddots & \ddots & 1\\
\vdots & \ddots & \ddots & \vdots\\
1 & 1 & \dotsc & 1
\end{pmatrix}\in\mathbb{R}^n_n.
\]
Determinare gli autovalori di \(\displaystyle J_n\), i relativi autospazi, dimensioni e basi di questi ultimi, e la matrice diagonalizzante.
Commento: non mi aspetto che questo esercizio resti insoluto a lungo.
Ciao a tutti ho questo esercizio di fisica che non riesco a risolvere perché non capisco come scrivere usare quel Tempo (Tau) e in che formula."Due corpi di massa m1 e m2 sono legati tra loro da un'asta lunga d, di massa trascurabile. Il sistema viene messo in moto lungo l'asse x all'istante t=0, tramite l'applicazione di una forza di valore medio F durante un tempo τ,trascurabile agli effetti del moto. I corpi scivolano lungo un piano orizzontale con coefficienti di attrito µ1 e µ2.
Dopo aver ...

Buongiorno a tutti,
Devo dire che mi trovo in imbarazzo a scrivere, perché, sinceramente, non so da dove iniziare...
Come ho accennato nel mio post di presentazione, sono quattro anni che penso, parlo e scrivo sulla questione, e di mail ed acqua sotto i ponti ne è passata parecchia.
Dopo aver provato a fare ordine nei miei pensieri, ho pensato che la cosa migliore da fare è partire da qui.
Innanzi tutto, qualche definizione e convenzione grafica, per capire di cosa parlo quando uso certi ...
A lezione abbiamo fatto vedere che, data una funzione $f: X -> Y$, $f$ è iniettiva $<=>$ $AA A sube X$, $f^-1(f(A)) = A$. Vorrei analizzare questa implicazione: =>
$ A sube f^-1(f(A))$ vale sempre, io però ho un dubbio sull'altra inclusione. Si vuole dimostrare che $f^-1(f(A)) sube A$. Preso $x in f^-1(f(A)) => f(x) in f(A), EE a in A$ tale che $f(x) = f(a) =>$[nota]per l'iniettività della funzione[/nota] $x = a => x in A$.
Siccome senza esempi trovo tutto fin troppo astratto, ho ...

Buongiorno,
sono interessato a sapere come si utilizza la seconda legge di Newton in caso di molle in serie.
Vi vorrei sottoporre il seguente esercizio (che mi sono appena inventato perchè non ne ho trovati sulle dispense che ho a disposizione):
Un corpo dotato di una velocità iniziale di modulo $v_0$ (moto unidimensionale) arriva a contatto con tre molle disposte in serie tali per cui l'ultima di essere è agganciata a una parete. Scrivere la seconda legge di Newton per il ...
Ciao ho due fili indefiniti paralleli posti a distanza 2d uniformemente carichi con $\lambda $. La direzione dei fili coincide con l’asse z di un sistema di riferimento in cui i due fili sono posizionati sull’asse x del sistema a x=+-d rispettivamente.
Ho trovato la componente y del campo che è $Ey= \lambda /(2 \pi \epsilon)+(y/((x+d)^2 + y^2)+y/((x-d)^2 + y^2)) $ ora "ricavare il campo elettrostatico di una lastra piana uniformemente carica con densità di carica $\sigma $". Qualcuno può aiutarmi?

Ciao a tutti,
sono nuovo e (lo dico subito ) non sono un fisico, e probabilmente sto già trasgredendo a qualche regola del forum... vi chiedo scusa in anticipo.
Mi chiamo Carlo, lavoro nel marketing e da qualche anno mi sono appassionato alla scrittura, specialmente racconti e storie brevi. Ultimamente ho iniziato a lavorare su un progetto che mescola fantasy e fantascienza, e mi sono ritrovato a costruire un’idea piuttosto complessa che vorrei condividere qui, nella speranza di trovare ...

Buonasera, ho accantonato l'algebra da un pò, ora la sto riprendendo, e ho qualche dubbio su vari passaggi.
Considero il seguente esercizio che sembra racchiudere i miei dubbi
Devo provare che
$ x,y \in NN, \ xRy <=> x+y \in NN_p$ è una relazione di equivalenza e descrivere l'insieme quoziente associato.
Per verificare che la relazione sia di equivalenza, dobbiamo verificare che la relazione $R$ sia riflessiva, simmetrica e transitiva, quindi
-1) Riflessività: Sia $x in NN$ si ha per ...

Ciao a tutti, vorrei chiedere riguardo alla negazione della definizione di limite. La negazione della def. di limite è:
$EE epsilon_0$ $>0$ $tc$ $ $ $AA$ $delta >0$ $ $ $EE x_delta in X-{x_0}$ $ $ $tc$ $|x-x_0|<delta$ $ $ $e$ $ $ $|f(x)-l|>=epsilon_0$
dove $x_0$ è un punto di accumulazione per X, dominio della funzione ...

Salve.
Sia $ f(x) $ definita in un intorno di $ x=e $ ,derivabile due volte in $ x=e $ e t.c. $ f(e)=-1 , f'(e)=-2 , f''(e)=2 $ . Scrivere la formula di Taylor al secondo ordine centrata in 1 di $ h(x)=f(xe^x) $ .
Risolvendo con due metodi diversi trovo un risultato differente, anche se molto simile.
Metodo 1)
$ h(x)=h(1)+h'(1)(x-1)+ (h''(1))/2(x-1)^2+o((x-1)^2) $
$ h(1)=f(e)=-1 $
$ h'(1)=2ef'(e)=-4e $
$ h''(1)=4e^2f''(e)+3ef'(e)=8e^2-6e $
Sostituendo nella formula di Taylor
$ h(x)=-1-4e(x-1)+(4e^2-3e)(x-1)^2+o((x-1)^2) $
Metodo 2)
Sviluppo al ...
Salve ho il seguente problema:
"Considera una sfera di Raggio R=0,5*10^-10 m con al centro una carica Q1=2e e una carica Q2=-e distribuita uniformemente all'interno della sfera.
a)determina lavoro in eV necessario per portare una carica -e da infinito fino alla superficie esterna nella sfera nel punto dell'asse z a distanza R dal centro.
b)Calcola momento di dipolo della configurazione completa, nonché il potenziale generato da tale distribuzione per r>>R.
c) Calcola E generato dalla ...

Ciao a tutti.
Mi sono imbattuto nel seguente esercizio sugli spazi vettoriali con la quale sto avendo difficoltà.
"Si consideri la matrice $A = [[1,-2],[2,-4]]$ e si definiscano gli insiemi
\[
V = \{ X \in \mathbb{M}^{2 \times 2} (\mathbb{R}) | AX = O \}; \qquad W = \{ Y \in \mathbb{M}^{2 \times 2} (\mathbb{R}) | YA = O \}.
\]
Dimostrare che $V, W$ sono sottospazi di $\mathbb{M}^{2 \times 2} (\mathbb{R})$, trovare una base e la dimensione di $V, W, V + W, V \cap W$."
Dopo aver dimostrato che effettivamente ...
Salve ho un filo indefinito con densità lineare di carica $\lambda$ avvolto da un guscio cilindrico di raggio R e carico superficiale $\sigma$. Mi chiede il potenziale in tutti i punti sapendo che sulla superficie del cilindro il potenziale vale 0. Ora nel caso interno al guscio posso considerare come carica interna solo quella del filo e perciò grazie alla legge di Gauss $V(r)-V(R)=V(r)= (\lambda)/(\epsilon) *r$? Mentre nel caso esterno considero la carica interna come $q= \lambda*l+ \sigma *2* \pi *r*l$ e quindi ...
Come è estremamente noto, se $x!=0$, $x*y=x*z$ se e solo se $y=z$, con $x,y,z in RR$.
Mi è venuto un dubbio sulla dimostrazione di questa proposizione. Probabilmente sarà molto banale, però vorrei abituarmi a studiare con il massimo rigore possibile. Per dimostrare questa implicazione,
Vorrei un chiarimento sulla relazione di divisibilità: $x rho y <=> x | y$ ("x divide y"). Se io la enunciassi in questo modo la relazione non sarebbe d'ordine perché non sarebbe riflessiva ($0$ non divide alcun numero, in particolare non divide sé stesso), quindi spesso la si scrive così: $EE k in NN : y = kx$, dove $k$ è il divisore e $x$ è il quoziente.
Quest'ultima formulazione mi sembra equivalente alla prima, se non fosse per il fatto che quest'ultima ...
Sia $A$ un insieme. Vorrei capire se sono vere o false le seguenti equivalenze:
i) L'insieme dei minimali ha più di un elemento $<=>A$ non ha minimo?
La $=>$ mi sembra vera, perché il minimo di un insieme è unico e quindi se si hanno più minimali non si può avere un minimo.
Per la

Buongiorno a tutti, sto avendo difficoltà a risolvere il seguente problema:
"Una pallina si trova ferma alla base di un piano inclinato di $45°$ rispetto all'orizzonte e di altezza $h = 1.1m$ montato sopra un carrello. Il carrello viene messo in movimento con accelerazione costante $A$ per un intervallo di tempo $τ$. dopodiché il carrello prosegue con moto uniforme. Si determini il valore di $A$ per i quali la pallina, scivolando ...
Ciao qualcuno può spiegarmi il metodo delle cariche immagini? Cioè se ho un piano indefinito e a distanza D una carica puntiforme io posso utilizzare il metodo delle immagini per sostituire al piano una carica di segno opposto a distanza 2D dalla carica originale e ricavarmi la densità?

Possiamo affermare che la necessità tra i fatti è diversa dalla necessità tra le frasi e che la definizione di verità non serve alla necessità tra i fatti ma serve per definire la necessità tra frasi?
Devo dimostrare che se una relazione $rho$, definita su un insieme $X$, è un buon ordinamento, allora tale relazione è anche di ordine totale.
Ordine totale vuol dire che $AA x,y in X, x rho y$ oppure $y rho x$
Distinguo se $X$ sia finito o infinito
1) Per ipotesi, ogni sottoinsieme di $X$ non vuoto ammette minimo. Considero tutto $X$, che per ipotesi è finito: $X = {a_1,a_2,...,a_k}$. Questo ha minimo. Sia ...