Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Ciao a tutti gli utenti, cerco un aiuto per risolvere limiti del genere,vorrei chiedervi non solo come sia giusto svolgerlo ma capire perché la tecnica che uso è evidentemente sbagliata (non essendo il risultato corretto). Vorrei cioè capire l'errore e vi ringrazio.
$lim x->∞ (3-sin(1/x))1/x$
avendo intravisto un limite notevole ho pensato di usare l'equivalenza asintotica che ne discende e ottenere:
$lim x->∞ (3-(1/x))1/x$
e dato che 1/x->0 per x->∞
$lim x->∞ (3-0)*0=0$
1- Non capisco perché tale metodo ...
Buonasera a tutti,
vi chiedo una mano su un argomento su cui sono decisamente arrugginita
La consegna dell'esercizio chiede di trovare per quali \(\displaystyle x \in \mathbb{R} \) la serie è convergente:
\(\displaystyle \sum_{n=-1}^\infty \frac{x^{2n-1}}{(n+1)!}\)
Ho cambiato parametro per far partire la serie da 0 (forse non era necessario?)
\(\displaystyle t=n+1 \Longrightarrow
\sum_{t=0}^\infty \frac{x^{2t-3}}{t!}\)
Ho pensato di usare il criterio del rapporto e ...
Ciao,
In un esercizio a lezione si doveva cercare una successione tale che:
$lim_(n to +infty)((n+1)/(1+n^3))/a_n=1$
Dove $a_n$ è la successione da trovare.
La prof ha fatto così:
$lim_(n to +infty)(n+1)/(1+n^3)=lim_(n to +infty)1/n^2$
Quindi la successione cercata è $1/n^2$
Facendo questo lei ha usato il fatto che il limite del quoziente è il quoziente dei limiti (giusto?), ma questo non vale solo quando il limite di $a_n$ è diverso da $0$?
Nel nostro caso $1/n^2 rightarrow 0$
Salve, propongo il calcolo di un integrale di linea di II specie, in quanto ho un dubbio.
L'integrale è il seguente:
$int_Cx/(x^2+y^2+z^2)^(3/2)dx+y/(x^2+y^2+z^2)^(3/2)dy+z/(x^2+y^2+z^2)^(3/2)dz$ con $C$ pari al segmento che unisce i punti $(0,4,3)$ e $(2,2,1)$. Per risolvere l'esercizio, ho fatto ricorso al differenziale esatto, che si vede facilmente essere soddisfatto dalla funzione $f(x,y,z)=-1/sqrt(x^2+y^2+z^2)$. Ho dunque calcolato la differenza tra $f(2,2,1)$ e $f(0,4,3)$, solo che verrebbe: $U=-1/3+1/sqrt17+c$ ma anche ...
Chiedo scusa, mi domandavo una cosa, il Wronskiano, essendo un tensore che ha per elementi delle funzioni, è un campo tensoriale? Oppure no perché le funzioni sono in una sola variabile indipendente? Mi domandavo inoltre un'altra cosa. Se il Wronskiano di m funzioni $f_i(x)$ (con $i$ da $1$ a $m$) è:
$W=|(f_1(x),...,f_m(x)), (f_1^((1))(x),..., f_m^((1))(x)), (...,...,...),(f_1^((m-1))(x),..., f_m^((m-1))(x))|$
Può esistere anche il Wronskiano di m funzioni per dire $f_i(x,y)$?
Salve. Risolvendo un problema di Cauchy con la seguente ODE di secondo grado non omogenea: $x^(II)+14x^I+49x=e^(-7t)$, risolvendo il wronskiano della particolare, come derivate delle costanti mi sono venuti tali valori:
$c_1^I=e^(7t)/(14t)-e^(7t)/14$ e $c_2^I=-e^(7t)/(14t)+e^(7t)/14$. Però mi blocco nel risolvere i rispettivi, integrali (ovviamente parlo solo del primo termine di ciascuno, dato che il secondo è facilmente integrabile in modo immediato e dà rispettivamente $-e^(7t)/98$ e $e^(7t)/98$): ho provato sia per ...
Salve a tutti, un esercizio riportato come esempio al calcolo integrale propone di calcolare l'Area della funzione $f = x^2$ tramite definizione di Fermat o la somma di Cauchy-Riemann.
per definizione si divide l'intervallo in "sotto-rettangolini" $[0,1]$ in $n$ segmenti uguali di estremi $x_i = i/n$, $x_i+1 = (i+1)/n$, con $i=0,...,n-1$
(In questo caso il libro ne ha presi 7 per esempio)
Quindi l'Area risulta: $\sum_{i=1}^(n-1) 1/n * (i/n)^2$ = $1/(n^3) * \sum_{i=1}^(n-1) i^2$ = ...
Salve a tutti, in vista del primo parziale di Analisi 1 ho riscontrato problemi nella risoluzione del seguente esercizio e ho pensato di chiedere aiuto qui sul Forum.
L'esercizio è il seguente: Dimostrare per induzione che (9^n + 3) è divisibile per 4 per ogni n.
Dopo aver dimostrato il passo base per n=1, non riesco a svolgere il passo induttivo sostituendo ad n il valore n+1.
Vi ringrazio in anticipo per l'aiuto!
Ciao a tutti, sto cercando di risolvere un integrale trilpo in coordinate sferiche, ma non riesco a capire come convertire gli estremi di integrazione del dominio. Il mio dominio é:
$[0, 1]^3$
Come posso procedere?
Grazie mille
Buongiorno a tutti, da poco ho iniziato l'approccio alle equazioni differenziali con relativo problema di Cauchy ma sfortunatamente sto avendo non pochi problemi e vorrei chiedervi delle delucidazioni sul seguente esercizio:
$<br />
{ ( y'+(2+cos x)/(2x+sen x)y=1/(x^2 -cos x +2)),( y(pi/2)=0 ):}<br />
$
che mi vado a riscrivere meglio così:
$<br />
{ ( y'=-(2+cos x)/(2x+sen x)y+1/(x^2 -cos x +2)),( y(pi/2)=0 ):}<br />
$
a questo punto mi ricavo $A(x)=int(a(x) dx)$ ottenendo $A(x)=-ln|2x+sen x| +c$
da qui mi vado a ricavare la $y(x)=e^(-ln|2x+sen x|)*( int e^(ln|2x+sen x|) *1/(x^2 -cos x +2) dx +c )$
A questo punto come procedo??? posso semplificare $e$ e ...
Sia $ w=a*dx+b*dy $ una forma differenziale chiusa in un insieme rettangolare. Devo dimostrare che w è esatta.
Fissiamo P (Xo, Yo) e consideriamo $ gamma $ una curva congiungente P con un punto generico Q (X,Y).
$ gamma $ è composta da due segmenti: uno orizzontale da (Xo, Yo) a (X, Yo) e uno verticale da (X, Yo) a (X, Y).
Se per comodità pensiamo di stare nel primo quadrante, Q è a destra e in alto rispetto a P.
$ gamma1 $ = $ { ( x=t ),( y=Yo ):} $ con t che va da ...
Scusate ma come si procede per risolvere una disequazione di questo genere?
$ x^2+2x-arctan(x)<0 $
Buonasera,
ho il seguente integrale $int (sinx+cosx)/(2sinx-3cosx) dx$
il testo dice di calcolarlo con il metodo di sostituzione.
Procedo con le formule parametriche,cioè:
$sinx=(2t)/(t^2+1)$
$cosx=(1-t^2)/(t^2+1)$
dove $t=tan(x/2)$, allora $dx=2/(1+t^2)dt.$
Per cui l'integrale assegnato risulta "se non ho fatto errori di calcolo":
$-2int(t^2-2t-1)/((t^2+1)(3t^2+4t-3))dt$
al denominatore ho due radici reali distinte, e due radici complesse coniugate "sempre se non mi sbaglio", quindi dovrei determinare le radici di ...
Nello studio delle serie dovevo mostrare che è a termini positivi per applicare qualche criterio comodo.
Tuttavia dopo varie semplificazioni arrivo ad avere il termine generale $a_n=e^(1/n)-1-1/n$ ho ricontrollato i calcoli e son giusti ma mi blocco nel porla $>=0$.
Salve, scusate stavo pensando al concetto di Jacobiana e alle funzioni vettoriali. Essendo il gradiente una funzione vettoriale, ho pensato, potrebbe ammettere una Jacobiana, che dovrebbe essere il prodotto tensoriale tra $\nabla$ e $\gradf$.
Ora, se $E=\gradf=(\delf)/(\delx) u_x+(\delf)/(\dely) u_y+(\delf)/(\delz) u_z$ e poiché il prodotto tensoriale con nabla dovrebbe darmi la Jacobiana, dovrei ottenere un tensore con componenti $(\delE)/(\delx_i)$ e quindi dovrebbe risultare in qualcosa tipo:
$J=|((\del^2f_x)/(\delx^2), (\del^2f_x)/(\delx\dely), (\del^2f_x)/(delx\delz)), ((\del^2f_y)/(\dely\delx), (\del^2f_y)/(\dely^2), (\del^2f_y)/(\dely\delz)), ((\del^2f_z)/(\delz\delx), (\del^2f_z)/(\delz\dely), (\del^2f_z)/(\delz^2))|$ giusto?
Dato che ...
Salve ragazzi nell'esame che terrò a breve ci saranno i numeri complessi, nello sbordone libro dal quale studio non sono presenti questi esercizi e ho costruito le mia basi un po' di qua e di la. Ora mi trovo in un equazione dubbia
$(z-i)^3=i^3$ ho sviluppato il cubo e semplificato $z^3-3iz^2+3z=+2i$ poi$(z(z^2-3i+3)=2i$ ora sto sicuramente sbagliando qualcosa sapreste aiutarmi?
qualcuno può spiegarmi come vanno risolti gli integrali con il metodo dei residui? io ho visto solo il caso in cui l'integrale va da 0 a 2pi, ma gli altri casi in cui si deve applicare jordan non li ho capiti. quando si usa jordan e come si usa? grazie
$lim_(xtoinfinity)((x^2+5x+3)/(x^2+2))^(x+(-1)^x)$
giacche $(-1)^x$ non esiste come sviluppo questo limite cioe non lo considero proprio quel tratto?
Solo per le equazioni autonome,cioè che non dipendono esplicitamente dalla variabile indipendente,vale il lemma che se una funzione è sua soluzione, allora lo sono anche le funzioni ottenute per traslazione (queste ultime definite nel dominio traslato). Come mai questo lemma non è valido per le equazioni differenziali non autonome, cioè che dipendono anche dalla variabile? Mi fate un esempio ? Grazie