Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
DavideGenova1
Ciao, amici! Il mio libro di analisi propone un esercizio che mi ha un po' spiazzato... Data la funzione \[f(x,y)=(y-x^2)(y-\frac{x^2}{2})\] si tratta di osservare che $x=0$ è un minimo locale per tutte le funzioni $g_m(x)=f(x,mx)$ (il cui grafico direi che sia la curvatura sezionale lungo di direzione $(1,m)$), ma un punto di sella per $f$. Ho verificato che $(0,0)$ è un minimo di $g_m(x)=(mx-x^2)(mx-x^2/2)$ per ogni $m$ e anche nella ...
8
22 apr 2012, 18:16

21zuclo
Ciao a tutti mi sono imbattuto in questo limite, ma arrivo ad un punto che non so più andare avanti. Aiutatemi per favore. \(\displaystyle \lim_{n\rightarrow+\infty} (\sqrt[n]{1+n}-\sqrt[n]{n})^{\frac{1}{\ln n}} \) per svolgerlo mi sono ricondotto alla forma \(\displaystyle e^{\ln} \), ma arrivo in un punto a cui non so più andare avanti. \(\displaystyle \lim_{n\rightarrow+\infty} \exp \ln((\sqrt[n]{1+n}-\sqrt[n]{n})^{\frac{1}{\ln n}}) =\lim_{n\rightarrow+\infty} \exp \left(\frac{1}{\ln n} ...
2
22 apr 2012, 20:31

Brancaleone1
Ciao a tutti Ho un dubbio sugli integrali impropri: l'integrale \(\displaystyle \int_0^1{f(x)dx}= \int_0^1{\frac{1}{x}dx}\) dato che \(\displaystyle f(x) \) non è definito nel punto 0, allora \(\displaystyle \int_0^1{\frac{1}{x}dx} = \lim_{x \rightarrow 0^+} \int_x^1{\frac{1}{t}dt} = \lim_{x \rightarrow 0^+} |\ln(t)|_x^1 = \lim_{x \rightarrow 0^+} (0-\ln x) = + \infty \) oppure \(\displaystyle \int_0^1{\frac{1}{x}dx} = \lim_{\epsilon \rightarrow 0} \int_{0+\epsilon}^1{\frac{1}{x}dx} = ...
2
22 apr 2012, 10:14

Andrea_year92
Salve, è il mio primo post e spero che qualcuno possa darmi una mano. Sto cercando di capire a fondo i criteri di convergenza delle serie numeriche e adesso mi sto lavorando il criterio del quoziente. Non d'Alembert. Quello che usa il criterio del confronto tra quozienti di termini consecutivi di due serie. Ipotesi e tesi sono queste: Se $sum\v_n$ converge e $sum\u_n$ è tale che $frac{u_(n+1)}{u_n}<=frac{v_(n+1)}{v_n}$ allora anche $sum\u_n$ converge. La dimostrazione è breve. Dall'ipotesi, ...
7
14 apr 2012, 18:43

ekans1
Vorrei un piccolo chiarimento su questo teorema, brevemente: per quale motivo è posta come ipotesi la derivata parziale rispetto ad $y$ diversa da $0$ ?
1
21 apr 2012, 17:14

DavideGenova1
Ciao, amici! Sto cercando di dimostrare che la funzione di Bessel $J_v(sqrt(x^2+y^2))=\sum_{n=0}^{oo} (-1)^n/(2^(2n+v)n!(v+n)!) (sqrt(x^2+y^2))^(2n+v)$ risolve l'equazione agli autovalori $\Delta u(x,y)= (\partial^2u)/(\partialx^2)+(\partial^2u)/(\partialy^2)=-\lambdau(x,y)$ per qualche $\lambda$. Ho derivato termine a termine in coordinate polari -ottenendo gli stessi risultati che ho ottenuto con le cartesiane, che ho utilizzato per verifica- con $\Delta u(x,y) =u_(rr)(rcos\theta,rsin\theta)+r^-2u_(\theta\theta)(rcos\theta,rsin\theta)+r^-1u_r (rcos\theta,rsin\theta)$) -e così continuo perché è più sintetico scrivere con $r=sqrt(x^2+y^2)$- ed ottenuto che $(\partial^2 J_v)/(\partial x^2)+(\partial^2 J_v)/(\partial y^2)= \sum_{n=0}^{oo} ((2n+v)(2n+v-1) (-1)^n)/(2^(2n+v)n!(v+n)!) r^(2n+v-2)+ r^-1 \sum_{n=0}^{oo}( (2n+v) (-1)^n)/(2^(2n+v)n!(v+n)!) r^(2n+v-1)$ $=\sum_{n=0}^{oo} ((2n+v)^2(-1)^n)/(2^(2n+v)n!(v+n)!) r^(2n+v-2)$ che non vedo come sia multiplo di ...
1
21 apr 2012, 17:03

Albert Wesker 27
Salve a tutti. Volevo proporre due esercizi: il primo chiede di calcolare il seguente integrale: $ int_(1)^(2) ln(sqrt(1+t+t^2))/(t^3) $ Ho proceduto cercando di eliminare il logaritmo. Ho quindi integrato per parti scegliendo $1/t^3$ come derivata prima di una funzione nota. A quel punto ottengo un integrale che dipende da $t$ e da una radice. All'interno della stessa, con completamento di quadrato e raccoglimento, ho fatto in modo che comparisse qualcosa del tipo $z^2+1$ (con ...
2
19 apr 2012, 18:36

Domodossola1
Salve a tutti, volevo fare un po' di esercizi con la seguente intestazione: Determinare se le seguenti funzioni sono iniettive. In caso affermaivo, determinare il valore della derivata prima della funzione inversa nel punto $(x_0, y_0)$ specificato. Vediamo il primo: $f(x)= e^{x^3}+2e^{arctg(3x)}-1$ punto (0,2) e nella soluzione spiega: Poichè $f'(x)=3x^2e^{x^3}+\frac{6}{1+9x^2}>0$,$ x \in R$, ne segue che f è strettamente crescente in R, e quindi ivi iniettiva. Allora ...
3
19 apr 2012, 16:45

DavideGenova1
Ciao, amici! Sto studiando la differenziabilità nell'origine della funzione definita come \[f(x,y) = \left\{ \begin{array}{ll} \frac{\sin^2(\sqrt{xy})}{y}, & x>0 \wedge y>0\\ x, & x \le 0 \vee y \le 0 \end{array} \right.\] Mi parrebbe ovvio che si debba verificare che $f(h,k)-f(0,0)-f_x(0,0)h-f_y(0,0)k=o(sqrt{h^2+k^2})$ per $(h,k)->(0,0)$, cioè (avendo calcolato, con risultato identico a quello dato come soluzione dal libro, $f_x(0,0)=1$ e $f_y(0,0)=0$, mentre è immediato vedere che $f(0,0)=0$) che ...
10
20 apr 2012, 12:22

laura1232
Ciao, scrivo per un semplice dubbio circa la classificazione di un tipo di punto di discontinuità. La funzione $ y=e^{frac{1}{ln x}} $ ha per $x=0$ un punto di discontinuità. Secondo me questo dovrebbe essere un punto di discontinuità di II specie in quanto $lim_{x rightarrow 0^-}e^{frac{1}{ln x}} $ non esiste. Invece su alcuni testi è classificato come discontinuità di terza specie (eliminabile) perchè $lim_{x rightarrow 0^+}e^{frac{1}{ln x}}=1 $.. Ma non dovrebbe bastare la non esistenza del limite sinistro (a prescindere dal valore del ...
4
20 apr 2012, 10:45

ee4
Ho una successione di funzione $f_k (x)$ devo verificare che non converge uniformemente in un intervallo $[a;+oo)$ e dimostrare che converge uniformemente in un intervallo $[b;+oo)$ dove $b>a$ e so che non converge uniformemente nell'intervallo $[a;b]$ la mia domanda è: esiste un teorema che dice che se un intervallo viene 'sporcato' da un insieme in cui la $f_k$ non converge uniformemente, anche esso non convergerà uniformemente?
3
ee4
20 apr 2012, 15:32

gugo82
Può darsi che la cosa sia di una banalità disarmante, ma al momento mi sfugge. È possibile dimostrare che: \[ \int_0^1 \frac{1}{t}\ \text{d} t =+\infty \] usando solo la definizione di integrale, cioè senza usare il fatto che \(1/t =(\ln t)^\prime\)? Se prendo una partizione \(D=\{x_0
2
21 apr 2012, 01:28

Obidream
Salve a tutti, eccomi alle prese con i miei limiti $lim_(x->0^(+)) (1-(1-7x)^log(x))/((e^(2x)-1)log(x^3))$ Questo non ho proprio idea di come provare a svolgerlo... Avevo pensato di scrivere cosi il limite: $lim_(x->0^(+)) 1/((e^(2x)-1)log(x^3))-e^(log(x)*log(1-7x))/((e^(2x)-1)log(x^3))$ Però non riesco a ricondurmi ad una forma decente neanche se provo ad usare gli sviluppi di Mclaurin, quindi non so proprio come risolverlo...
6
20 apr 2012, 17:13

Brancaleone1
Ciao a tutti Non sono sicuro di aver effettuato in maniera corretta il calcolo di questo limite, anche se il risultato che mi viene non è un mostro \(\displaystyle \lim_{(x,y)\rightarrow(2,1)}\frac{(y-1)^2 \sin{(\pi x)}}{(x-2)^2 + (y-1)^2}\) Passando alle coordinate polari impongo \(\displaystyle \begin{cases} x = 2 + \rho \cos \theta \\ y = 1 + \rho \sin \theta \end{cases} \) Ottengo \(\displaystyle \frac{(y^2 +1 - 2y) \sin{(\pi x)}}{(x^2+4-2x) + (y^2+1-2y)} = \) \(\displaystyle = ...
34
20 apr 2012, 11:59

Sk_Anonymous
Sia \(\displaystyle f : [a, +\infty [ \to \mathbb{R}\) una funzione continua e derivabile su tutto l'intervallo di definizione. Viene chiesto di provare che, se \(\displaystyle \lim_{x \to + \infty} f(x)=f(a) \), allora \(\displaystyle \exists \ \xi > a \) t.c. \(\displaystyle f'(\xi)=0 \). Chiaramente, la prima cosa che mi è venuta in mente è stata di utilizzare globalmente il teorema di Rolle in qualche modo, ma poi ho preceduto come segue: Caso 1: la funzione è costante, quindi la ...
5
20 apr 2012, 14:36

Paolo902
Siano [tex]F,G \colon \mathbb R^{n} \to \mathbb{R}^{n}[/tex] campi vettoriali di classe $C^1$. Si mostri con un esempio che la condizione di uguaglianza dei flussi \[ \int_{\partial \Omega} F \cdot \nu \mathrm{d}\sigma = \int_{\partial \Omega} G \cdot \nu \mathrm{d}\sigma \] per ogni dominio [tex]\Omega[/tex] limitato e con frontiera $C^{1}$ non implica in generale che $F-G$ è costante. Si mostri invece che se $F,G$ sono irrotazionali ...
5
18 apr 2012, 18:34

lorvar
Salve! Premesso che ho già cercato nel forum senza trovare nulla vi espongo il mio problema. Ho una forma differenziale chiusa w. Il suo dominio è R^2-{-1,-2}. Ora io devo trovare una curva L tale che l'integrale esteso a L di w sia 0. Sulle dispense della prof dice che è il cerchio di centro (-1,-2) e raggio 1. Su altri esercizi simili trovo ellissi come curve. Il quesito è, come trovo la curva che mi permetta di avere quell'integrale = 0?
3
20 apr 2012, 11:44

Bandit1
ciao a tutti ragazzi potete darmi una mano per riuscire a massimizzare questo modulo? $| -0,00496 *e^(-j18849,5) *e^(-j1,57)*cos (alpha)-0,02 *e^(-j18849,5)*sen(alpha)|$ cioè dovrei trovare la $alpha$ per la quale si massimizza questo modulo
21
18 apr 2012, 12:55

biglia6
Ciao a tutti! Qualcuno saprebbe dirmi perché l'"anomalia" viene appunto chiamata così? Grazie
0
20 apr 2012, 17:04

tommyr22-votailprof
ciao a tutti, ho un problema col definire il più ampio intervaqllo di soluzioni diun'equazione differenziale. in pratica non capisco se il mio procedimento è giusto. In pratica io inizialmente mi calcolo il dominio iniziale della mia eq differenziale.Supponendo che sia questa: $y'=y/x$ allora avrò che $x!=0$. Poi per calcolarmi l'intervallo faccio praticamente l'intersezione tra dominio iniziale e dominio finale della soluzione.Supponendo che ad esempio la soluzione finale ...
14
19 apr 2012, 17:23