Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza

per provare la differenziabilità della funzione $f(x,y)=sqrt(|xy|)$ nel punto $(0,0)$ pongo
$lim_((h,k)rarr(0,0)) (f(h,k))/sqrt(h^2+k^2)$=$lim_((h,k)rarr(0,0)) sqrt(|hk|/(h^2+k^2))$
ora se questo limite esiste ed è =0 la funzione è differenziabile, ma il limite non esiste perchè se sostituisco $h=0;k=0$ mi viene $sqrt(0/0)$ che è indefinito, giusto? oppure c'è un altra spiegazione alla non esistenza di questo limite?
grassie!

ho la seguente equazione ricorrente=
$y(n+2)+y(n+1)+y(n)=$...secondo membro non mi interessa
con valori iniziali $y(0)=2$ e $y(1)=-3$
allora,operando la zeta trasformata mi viene=
$(z^2+z+1)Y - 2z^2+3z-2z$ (del primo membro ovviamente)
io ci arrivo fino all'espressione tra parentesi ma non capisco da dove viene fuori quel $- 2z^2+3z-2z$ ...
e provando a fare altri esercizi simili trovo sempre difficoltà in questa cosa...che poi alla fine è una formula...ma non riesco a capire come si ...

Salve, ho un dubbio su come si concludono i sistemi di equazioni differenziali lineari.
Io ho questo esercizio :
$\{(y_1'+y_1-y_2=0),(y_2'-4y_1+y_2=0):}$
intanto me le scrivo meglio e ho :
$\{(y_1'=-y_1+y_2),(y_2'=4y_1-y_2):}$
Mi scrivo la matrice associata : $((-1,1),(4,-1))$ e mi vado a calcolare il polinomio caratteristico che mi viene :
$x^2+2x-3=0$ risolvendo trovo gli autovalori :
$x_1=-3 => e^(-3x)$
$x_2=1=>e^x$
Quindi le soluzioni mie saranno date da :
$\{(y_1(x)=K_1e^(-3x)a_1 + K_2e^xb_1),(y_2(x)=K_1e^(-3x)a_2+K_2e^xb_2):}$
Ora mi devo andare a calcolare gli ...

devo calcolare l'integrale di
$ {sqrt(x-3) }/{x(x-4)} dx $
sostituisco t = la radice
e dopo i vari calcoli arrivo a calcolare
$ 3/2int_()^(){1}/{t^(2)+3} dt + 1/4int_()^(){1}/{t-1} dt - 1/4int_()^(){1}/{t+1} dt $
il secondo e il terzo sono logaritmi. e il primo??
ho trovato da una parte che il primo integrale equivale a
$ {1}/{sqrt(3)} arctg ({t}/{sqrt(3)}) $
ma poi facendo la derivata del tutto, non mi trovo con la funzione da integrare
Salve a tutti, sto avendo dei problemi con un integrale, nel particolare
[tex]\int\frac{1}{sinxcosx}dx[/tex]
tramite wolframalpha ho visto che il risultato è
[tex]log(sinx)-ln(cosx)[/tex]
però nella risoluzione dello stesso (cliccando su "show steps" insomma) utilizza cosecanti e secanti (dei quali io non conosco definizione, derivate e simili)
quindi mi veniva da chiedere se avevate qualche idea in merito alla risoluzione dello stesso oppure effettivamente mi conviene studiare quelle due ...

Ciao a tutti ho questo dominio per un integrale doppio ma non riesco proprio a capire come trasformarlo per poter calcolare l'integrale! Qualcuno potrebbe aiutarmi?
$D = {(x,y) in RR^2 : 1<= (x-2)^2 + y^2 <= 4, x <= 2, y >= x}$

Ho il seguente integrale doppio:
$I= int int_(D) (x^2+y^2+2) dx dy $ dove $ D= {(x,y) in RR ^2 | x geq sqrt(2)/2, x^2+y^2 leq 1 } $
Il dominio $D$ è la circonferenza di raggio unitario centrata nell'origine, ma solo la zona con $ x geq sqrt(2)/2 $
Praticamente è lo spicchio mostrato nell'immagine, ed è normale all'asse y.
Premetto che non posso usare le formule di Gauss-Green.
Allora immagino di dover pensare il dominio $D$ come $ D=D_1 - D_2 $ dove
$ D_1= {(x,y) in RR ^2 | x^2+y^2 leq 1 } $
$ D_2= {(x,y) in RR ^2 | x leq sqrt(2)/2 } $
quindi ...

Salve ragazzi ho questo esercizio su cui vorrei una conferma:
$f(x,y)=xyln(x^2+y^2)$.
Devo studiarne i punti critici e classificarli. Io mi trovo che il punto $(0,0)$ risulta punto critico perchè annulla il gadiente. L'hessiano risulta indefinito, dunque deduco che sia un punto ne di max ne di min. Giusto?
Sareste cosi gentili da chiarirmi le idee? Grazie mille a tutti.

Salve a tutti, ho un dubbio sullo svolgimento di questo esercizio :
$f(x,y)=e^(x^2+2x+(y-2)^2)*root(3)(|x^2+2x+(y-2)^2|)$
Il campo di esistenza, essendo la radice di indice dispari, ho che è tutto $RR$
Divido la funzione in due funzioni :
$\phi(t)=e^t*root(3)(|t|)$
$t(x,y)=x^2+2x+(y-2)^2$
Mi studio quindi la funzione $\phi$ separando i casi per via del modulo, e ho che :
Per $|t|>0$ la funzione è sempre crescente.
Per $|t|<0$ invece trovo un minimo sul punto $t=-1/3$
Ora mi chiedo, come ...

Salve a tutti,
mi viene chiesto di trovare in $RR$ la primitiva $F$ di $f(x) = xe^(-|x-2|)$ tale che $F(0) = 0$. Sinceramente non so da dove cominciare ... di sicuro so solo che ammette primitive perché è una funzione continua.
grazie mille
Salve a tutti! avreste un'idea di quale sostituzione posso fare per risolvere questo particolare integrale?:
\(\displaystyle \int\frac{1}{\sqrt{x^2+x+1}} \)

Devo fare la Z trasformata di
[tex]a(n)={(n^2+3n)\over (n+2)!}[/tex]
il mio problema è alla base...non so calcolare le serie a meno che non siano immediate.
infatti in questo caso ho:
[tex]a(n)={(n^2+3n)\over (n+2)!}={n^2+3n+2\over(n+2)!}-{2\over(n+2)!}={1\over n!}-{2\over(n+2)!}[/tex]
applicando la formula della zeta trasformata ho
[tex]Z[a(n)]=\sum_{n=0}^\infty\ {z^{-n}\over n!}-2 \sum_{n=0}^\infty\ {1\over z^n(n+2)!}[/tex]
la prima è la serie dell'esponenziale in regione 1/z...ma nn ...


Ragazzi ho un dubbio sulla scomposizione a livello complesso della funzione $F(x)=x^4-6x^2+25$.Ho imposto la sostituzione t=z^2 e ho ottenuto $t^2-6t+25=0$ ed ho ottenuto le due soluzione $t=3+4i$ e $t=3-4i$.E qui mi blocco, perchè le mie soluzioni non coincidono con quelle del mio testo.Le soluzioni dovrebbero essere +/-$(2+i)$ +/-$(2-i)$.Qualcuno può aiutarmi?..

Ciao a tutti. Ho un problema ai valori iniziali cosi definito:
$\{(y(n+2)+y(n+1)+y(n)=3cos^4(n\pi/2)),(y(0)=2),(y(1)=-3):}$.
Ho un problema con la trasformata della quantità al primo membro.
Io l'ho svolta così: ho posto $\mathcal{Z_u}[y(n)]=Y$, allora
$\mathcal{Z_u}[y(n+2)]=z^2Y-y(0)z^2-y(1)z=z^2Y-2z^2+3z$ (vi prego di correggermi se ho sbagliato);
$\mathcal{Z_u}[y(n+1)]=zY-2z+3$
Allora $\mathcal{Z_u}[y(n+2)+y(n+1)+y(n)]=z^2Y-2z^2+3z+zY-2z+3+Y=Y(z^2+z+1)-2z^2+z+3$.
E' corretto oppure ho sbagliato qualcosa?
Ciao,
ho un dubbio sulla uniforme continuità per le serie di potenze, con raggio finito > 0.
Il teorema di Abel mostra che se c'è convergenza in un estremo dell'intervallo di convergenza assoluta, allora c'è convergenza uniforme fino all'estremo, estremo incluso.
Nel caso non ci fosse convergenza in quell'estremo, rimarremmo con la sola tesi del teorema del raggio, ovvero che la convergenza totale è ben contenuta nell'intervallo di convergenza assoluta.
Il mio dubbio proprio questo caso, ovvero ...

Salve a tutti, oggi ho incontrato un integrale di questo tipo in geometria, ma trovo qualche difficoltà nel risolverlo...
$\int sqrt(1-cos(x))dx$
Il punto è che non ho proprio idea di come provare a risolverlo, quindi volere chiedere a voi uno spunto generale, da cui partire per risolvere integrali di questo tipo ( avevo pensato ad una sostituzione ma il problema è trovare quella opportuna)

Salve a tutti, mi stavo cimentando in una serie di esercizi sugli integrali definiti, ma mi sono reso conto di non saperli fare. Prima di tutto, cosa che ho già riscontrato in altri esercizi, non so come comportarmi con il valore assoluto, come nell'esecizio seguente $\int _{[\frac{\pi}{4},-\frac{\pi}{4}]}\frac{|sin(x)|}{cos(x)}dx$. Oltre a questo non so proprio come affrontare l'esercizio in generale.
Prendendone uno senza valore assoluto come il seguente $\int_{[\frac{\pi}{4},-\frac{\pi}{4}]}cos^3x dx$, io ho provato ad affrontarlo e ho ottenuto $\int_{[\frac{\pi}{4},-\frac{\pi}{4}]}(1-sin^2x)cosx dx$ = ...

Devo trasformare questo:
$sen(n*pi/2*(-1)^n)$
Divido i casi
$sen(n*pi/2*(-1)^n)= sen(n*pi/2) $ se n è pari. Ma $sen(n*pi/2) = 0$.
$sen(n*pi/2*(-1)^n)= sen(-n*pi/2) $ se n è dispari. Ma $sen(-n*pi/2) = -sen(n*pi/2)$.
Sia $n = 2k+1$ il numero dispari in questione
$-sen(n*pi/2) = - sen((2k+1)*pi/2)$; distinguo ancora una volta i 2 casi
$sen((2k+1)*pi/2)$ = 1 se k pari, -1 se k dispari.
sia $w= 2k$ oppure $2k+1$.
Per la definizione di trasformata Z
ho quindi come risultato finale $z^2/(z^2-1) - 1/(z^2-1)$
Vi trovate come me?

Ciao, amici!
Il mio testo di analisi non dimostra il fatto che la distanza dell'estremo superiore, definita nell'insieme $C(I)$ con $I \sub RR$ come
\[d_{\infty} (f,g)= \text{sup}_{x \in I}|f(x)-g(x)|\]
soddisfa la disuguaglianza triangolare $d(x,y)<=d(x,z)+d(z,y)$, così come la soddisfa, su $RR^n$ il caso discreto $d_{\infty}(\vec x, \vec y) = \text{max}_{i=1,...,n} { |x_i-y_i| } $.
Ho cercato parecchio su Internet, ma non ne trovo una dimostrazione... Qualcuno potrebbe aiutarmi suggerendo un link o una ...