Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
ho la distanza d=||x-y|| e considero d'=d/(1+d).
perché non è vero che ogni insieme chiuso e limitato rispetto a tale distanza non è compatto???
Mi aiutereste a svolgere questo esercizio?
Determinare la continuità di :
$f(x,y) ={ (lnxy if xy >0 ),( 0 if xy <=0):}$
Data la funzione $f(x,y) = (xy)/(1+x^2+y^2)$ determinare i punti critici
non mi riesce proprio mi potrete aiutare?
Grazie
ciao a tutti..
dovrei dimostrare che data f appartenente a Lp(Rn) e definita fn=f(x+n), fn ammette una sottosuccessione che converge sia puntualmente che debolmente a zero.
per quanto riguarda la convergenza debole ho pensato di usare il teorema di Banach-Alaoglu-Bourbaki (dato uno spazio di Banach X separabile, ogni successione limitata in X* ammette una sottosuccessione debolmente-* convergente) che mi assicura intanto l'esistenza di una sottosuccessione fn_k convergente. e poi moltiplicando ...
Sia dato un potenziale della forma
$ U(x,y)=ax^2+bxy+cy^2+dx+ey $
con $ a,b,c,d,e $ costanti reali
e sia $ ( x^(eq),y^(eq) ) $ una posizione di equilibrio
ossia tale che le derivate parziali prime di $ U $ calcolate in $ ( x^(eq),y^(eq) ) $ sono nulle: $ frac{partialU}{partialx}=0 $ e $ frac{partialU}{partialy}=0 $.
A me risulta che con il cambio di coordinate
$ { ( x=q_(1)+x^(eq) ),( y=q_(2)+y^(eq) ):} $
si ottiene
$ U(q_(1),q_(2))=alphaq_(1)^2+betaq_(1)q_(2)+gammaq_(2)^2+delta $
con $ alpha,beta,gamma,delta $ costanti reali,
quindi un potenziale quadratico in $ q_(1),q_(2) $ a meno di una ...
Salve a tutti...
la differenziabilità di una funzione nel punto P si determina anche calcolando le derivate parziali e verificando che siano continue giusto?
Ecco supponendo che calcolo la derivata rispetto a x di f(x,y) per controllare che è continua devo verificare che il limite della derivata per (x,y) tendente a P sia uguale a f(P) della derivata parziale????
Non mi so spiegare quindi faccio un esempio banalissimo
$f(x,y) = x^2+y^2$ devo verificare se è differenziabile in (3,2)
e fx= 2x e ...
Ciao a tutti
ho un esercizio che data la funzione
$f(z) = e^(2iz)/(z+4)^2$
e la curva $oint_(H_r)$ data da un semicerchio centrato in 0 e di raggio $R$
dimostrare che
$\lim_(R\to oo) oint_(H_r) f(z) = 0$
se ho capito bene il ragionamento (ma non ci spero), devo trovare una maggiorazione della funzione attuale e dimostrarne che il limite della funzione maggiorata tende a zero
per il denominatore non ci sono problemi prenderei $(z)^2$ anzichè $(z+4)^2$ e va bene perchè in modulo ...
so che se una funzione( supp. in una variabile) è dispari, il suo integrale su un intervallo simmetrico rispetto l'origine è nullo, giusto? ma se so che l'intervallo va da $a$ a $b$ e che la funzione è "dispari rispetto $c=(a+b)/2$" (non so come si dice) posso lo stesso affermare che l'integrale è nullo vero? basta fare una traslazione tramite un cambio di variabili...perciò ad esempio dovrei poter dire subito che $\int_{0}^{2\pi }\sin^{3}xdx$ è nullo, infatti sostituendo ...
Buon pomeriggio forum
Ho qualche dubbio su questo esercizio d'esame:
devo calcolare l'insieme di definizione:
$\omega = y log (1+xy) dx - x log (1+xy)$
$1+xy > 1$
$xy >0$ cioè $x>0, y>0$ e $x<0, y<0$
dire se è esatta.
se fosse esatta, implicherebbe che sia chiusa.
però ho notato che non è nemmeno chiusa.....poichè:
$da/dx =((x y)/(1+x y)+log(1+x y))$
$db/dx =(-(x y)/(1+x y)-log(1+x y))$
quindi l'esercizio successivo che mi chiede:
calcolare facendo uso delle formule di gauss green l'integrale curvilineo di ...
Ciao a tutti avrei bisogno di un aiuto sullo svolgimento di questo esercizio Calcolare i coefficienti della serie di Fourier del prolungamento periodico dispari della
funzione:
$f(x)= 2x^2 , x in[0,pi]$
Ringrazio anticipatamente
Ciao a tutti
Devo calcolare $\root{5}{e}$ con 2 cifre decimali esatte, ma non so se sto facendo giusto.
Prendo $g(x)=e^x$. In questo modo $\root{5}{e}=g(\frac{1}{5})$ con $x_0=0$.
Considerando il resto di Lagrange $R_n(x)=\frac{g^{n+1}(\xi)}{(n+1)!}x^{n+1}$ ho che
$|g(\frac{1}{5})-P_n(\frac{1}{5})| = |\frac{e^x}{(n+1)!} \cdot \frac{1}{5^{n+1}}|$
Allora
$|g(\frac{1}{5})-P_n(\frac{1}{5})| \le \frac{e^{\frac{1}{5}}}{(n+1)!} \cdot \frac{1}{5^{n+1}} < \frac{3}{(n+1)! \cdot 5^{n+1}}<10^{-3}$, che è vero se $n \ge 3$
In questo modo
$P_n(\frac{1}{5})=P_3(\frac{1}{5})=\sum_{k=0}^3 \frac{g^k(0)}{k!}(\frac{1}{5})^k=\sum_{k=0}^3\frac{1}{k!}\frac{1}{5^k}= 1+\frac{1}{5}+\frac{1}{2 \cdot 5^2}+\frac{1}{6 \cdot 5^3} \approx 1,221$ con $n=3$ cifre decimali esatte.
Perciò
$P_3(\frac{1}{5}) - 10^{-3}<\root{5}{e}<P_3(\frac{1}{5})+10^{-3}$
$\Rightarrow 1,220<\root{5}{e}<1,223$
$\Rightarrow \root{5}{e} \approx 1,22$ con due cifre ...
devo trovare una primitiva di $x^2 f(x)$.
la funzione è la seguente:
$ sum_(n = 1)^(+oo) n^3[(1+1/n)-1] (x^3-1)^n $
per calcolarmi la primitiva dovrei calcolarmi l'integrale giusto??
quindi scrivo:
$int x^2 sum_(n = 1)^(+oo) n^3[(1+1/n)-1] (x^3-1)^n dx $
poichè $ sum_(n = 1)^(+oo) n^3[(1+1/n)-1] $ non dipende da x lo posso anteporre all'integrale e quindi calcolare:
$int x^2 (x^3-1)^n dx $
e adesso???
scusate se vi do fretta ma domani dovrei affrontare un orale ed ho ancora dei dubbi
ringrazio anticipatamente quanti interverranno!
Salve a tutti non riesco a capire proprio come svolgere questo esercizio:
Determinare se è prolungabile con continuità
$f(x,y) = (e^(x-y)-1)/(2x-2y)$
Salve a tutti,
sto cercando di determinare il gradiente della $f(x,y) = cos2xseny$ nel punto $(pi/4 , pi/4)$
Se faccio il limite del rapporto incrementale mi esce la derivata rispetto x e rispetto y entrambe 0 se invece faccio subito la derivata rispetto a x esce -$sqrt(2)$...dove sbaglio???
E' da ieri che ogni volta che sfoglio questo passaggio sul mio libro di Analisi ho il vuoto -non riesco ad immaginarmi nulla.
Sia $f: X -> Y$, siano $X_1$ , $X_2 $ e $A$ sottoinsiemi di $X$ e $Y_1$ , $Y_2$ e $B$ sottoinsiemi di $Y$.
Valgono le seguenti cose:
1. $f^(-1) (Y_1 nn Y_2) = f^(-1) (Y_1) nn f^(-1) (Y_2)$[/list:u:2kynygwi]
2. $f(X_1 nn X_2) sube f(X_1) nn f(X_2)$[/list:u:2kynygwi]
Qualche dritta per ...
Ciao a tutti
Ho la funzione
\[ f(x)= \int_x^{+\infty} g(t) dt= \int_x^{+\infty} \frac{\arctan{\frac{1}{t}}}{t^3-t} dt \]
Dopo averne determinato il dominio, devo calcolare il valore di $f(10)$ a meno di $10^{-3}$.
Per il dominio non credo di avere problemi: mi trovo il dominio di $g(t)$, calcolo i limiti per gli estremi e controllo la convergenza. Mi viene:
$\text{dom} g(t)=(-\infty, -1) \cup (-1, 0) \cup (0,1) \cup (1, + \infty)$
$\lim_{t \to 1^+} \frac{\arctan \frac{1}{t}}{t(t^2-1)}= \infty$ di ordine 2 $\to$ diverge
$\Rightarrow \text{dom} f(x)=(1, + \infty)$
Ho però ...
$\sum_{k=0}^(+infty) (-1)^(n)*(n!)/(2^n+3^n)(x+2)^n$
Bisogna determinare i valori di $x∈R$ per i quali la serie risulta convergente, motivando la risposta.
Il ragionamento che ho fatto io è il seguente:
-Ponendo $y=x+2$ ottengo una serie di potenze.
-Studio $(-1)^(n)*(n!)/(2^n+3^n) = a_n$
Applico il criterio del rapporto e facendo il valore assoluto il termine $(-1)^(n) =1$ e quindi ottengo che:
$lim_(n->+infty)(n+1!)/(2^(n+1)+3^(n+1))*(2^n+3^n)/(n!)$
$lim_(n->+infty)((n+1)(2^n+3^n))/(2*2^n+3*3^n)$
E ora facendo il limite mi viene $+infty$ e sicuramente c'è un ...
Ciao a tutti, tra due settimante (in teoria) avrei l'esame di analisi 1 e ancora ho profondi problemi sui limiti
La teoria la so e alcuni limiti mi vengono, mentre altri no... per questo penso di commettere sempre lo stesso stupido errore
Ad esempio sono alle prese con questo limite (collego a wolfram alpha cosi facciamo prima )
$lim_(x->0)(((1+x)^2*log(1+x)-cos(2x)*tanx)/((1-e^(-x))^2*(x-cosx)^2))$
e applicando il limite notevole ----> (1+x)^1/x = e e anche ----> log(1+x)/x = 1
dovrei ottenere questo limite:
...
salve volevo avere alcune delucidazioni in merito ad esercizi di analisi 2
lo svolgimento con spiegazione se è possibile di tali limiti :
$ lim_(x -> 0) sin(x^2) / x^3 = 0 $ (derivata lungo x in (0,0)) per verificare la differenziabilità
--------------------------------------------------------------------------------------------------------------------------------------------------
la differenziabilità di tale funzione $ F(x,y)= sinh( 2x+y) / (2x+y) $ in (0,0) in particolare l'ultimo limite (quello per deltaX deltaY ...
Salve a tutti,
come posso determinare il gradiente di $f(x,y)=2sqrt(xy)$ nel punto $(1,2)$
con i limite del rapporto incrementale o direttamente facendo la derivata rispetto a x e y