Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Domande e risposte
Ordina per
In evidenza

Ho un dubbio che non riesco a chiarire.
Come faccio a dire quanti elementi in un gruppo hanno esattamente quell'ordine?
ad esempio in $S_n$ quanti elementi hanno ordine $n$? quindi mi sto chiedendo quanti non hanno un ordine inferiore a $n$...
e per un generico $k|n$?
Forse la domanda è un po' troppo vaga...
Però forse il problema è risolvibile almeno in $S_p$ con p primo?
Non saprei da dove iniziare il ragionamento.. Se un ...
Posto $S=N-{0,1}$ $x in S$ dove $x=p_1^(a_1)p_2^(a_2)...p_t^(a_t)$ con $a_i$ naturali positivi e $p_i$ numero primo positivo. $AA i=1,...,t$.
Adesso ho la seguente applicazione $f: S->N$
$f(x) = max{p1,...,pt}$
Studiare iniettività, suriettività $[6]_(R_f)$ e $f^-1({1})$
( a prescindere che qua dice $R_f$ ma la relazione $R$ qual è?)
Per quanto riguarda l'iniettività, mi sembra che non sia iniettiva poichè:
Presi ...

Nelle prime pagine di un libro di topologia algebrica trovo scritto $f(A\cap B)\subseteq f(A)\cap(B)$.
E' un errore del testo?
$f(A\cap B)=f(A)\cap(B)={ y| \exists x\epsilon A \wedge \exists x\epsilon B |f(x)=y}$ O sbaglio?

Ciao, ho un problema con il seguente esercizio:
Nel gruppo $ GL_2( CC ) $ si considerino i seguenti sottogruppi: $ H=< ( ( xi^2 , 0 ),( 0 , xi ) ) > $ , $ K=< ( ( 0 , xi^2i ),( xii , 0 ) ) > $ , dove $ xi $ è una radice primitiva cubica dell'unità.
In un punto mi dice di considerare il gruppo $ G=HK $ e di classificarlo.
Dunque $ |H|=3 $ , $ |K|=4 $ e $ H nn K= I_2 $ per cui: $|G|=|HK|=12$. Non è un gruppo abeliano e quindi l'unico gruppo che mi viene in mente che potrebbe essere ...
Calcolare il [tex]MCD(f,g)[/tex] con [tex]f(x)=x^5 +\bar{1}[/tex] e [tex]g(x)=\bar{3}x^3 + \bar{2}[/tex] con [tex]f(x),g(x) \in \mathbb{Z}_5[x][/tex].
[tex]f(x)=g(x) \cdot (\bar{2}x^2) + (x^2+ \bar{1})[/tex]; ([tex]r_1(x)=f(x) \cdot 1 - g(x)(\bar{2}x^2)[/tex])
[tex]g(x)=r_1(x)(\bar{3}x) + (\bar{2}x + \bar{2})[/tex]; ([tex]r_2(x)=g(x)\cdot 1 - r_1(x)(\bar{3}x)[/tex])
[tex]r_1(x)=r_2(x)(\bar{3}x) + (\bar{4}x + \bar{1})[/tex]; ([tex]r_3(x)=r_1(x)\cdot 1 - ...
... in $ZZ_14$.
Sia [tex](A,+,*)[/tex] un anello e sia [tex]a \in A[/tex]. [tex]a[/tex] è idempotente se [tex]a^2=a[/tex].
In $ZZ_14$, a parte gli elementi "banali", cioè $[0]_14$ e $[1]_14$, gli altri li posso determinare sapendo che:
[tex]a^2=a[/tex] e [tex]a^2-a=a(a-1)=0[/tex]
Se [tex]a[/tex] è idempotente deve essere un multiplo di [tex]14[/tex] quindi se è divisibile per [tex]14[/tex] è divisibile
per uno dei fattori di [tex]14=7*2[/tex]. Quindi in ...

Voglio mostrare che un gruppo (di cui ho la presentazione) è isomorfo ad un altro, nel caso specifico
$G = <x,y,z,t | x^2 = y^2 = z^3 = t^2 = 1 , R > \cong S_4$ dove R è una sfilza di relazioni che non sto a scrivere.
Sta di fatto che voglio costruire un omomorfismo e quindi dedurre che è un isom.
Ho trovato che G ha due sottogruppi normali, $<x,y>$ e $<x,y,z>$ di ordine rispettivamente 4 e 12 (ho solo dimostrato che ne ha al max 12).
Come scrivo l'omomorfismo? Basta che indico le immagini dei sottogruppi di G? o ...

Salve a tutti volevo un aiuto per risolvere questi esercizi per poter poi avere uno schema mentale per poter poi svilupparne altri . Grazie in anticipo
Provare per induzione che :
$ sum_(k=0)^(n) 3^k = (3^(n+1) - 1 ) / 2 $

Buon giorno a tutti.
L'Aritmetica di Peano ha degli assiomi per l'addizione e per la moltiplicazione, ma non ha assiomi per l'elevamento a potenza, che viene definito mediante gli assiomi esistenti (in base alla moltiplicazione, se non sbaglio). Se l'elevamento a potenza si può definire in base alla moltiplicazione, perché c'è bisogno di assiomi per la moltiplicazione? Perché non la si può semplicemente definire in base all'addizione?
Grazie. Saluti,
Mario Franco Carbone
Ho la seguente relazione in $NxN$
$(a,b) alpha (c, d) <=> ab=cd$
Devo verificare se è una relazione di equivalenza e lo è
inoltre mi chiede se:
In $X$ sottoinsieme di $NxN$ ,$ X={(1,0), (1,1), (1,5), (2,1), (2,2), (3,3), (4,9)}$
$(a,b) beta (c,d) <=> (a,b) alpha (c,d)$
Anche in questo caso mi trovo che è una relazione di equivalenza.
Mentre se ho in $NxN$
$(a,b) gamma (c,d) <=> ab$ divide $cd$ mi chiede se è una relazione d'ordine e non mi pare poichè non vale l'antisimmetria.
Se ...

salve ragazzi, devo provare che la seguente applicazione è isotona, potreste vedere se secondo voi il procedimento è fatto bene? prima però vi fornisco delle nozioni.
definisco prima gli "annullatori sinistro e destro di A$sube$S ponendo $L(A)={x in S|(AAainA) xa=0}$;
e $R(A)={x in S|(AAainA) ax=0}$. Ovviamente se $A={x}$ si scive direttamente $L(x)$, che rappresenta l'insieme di tutti gli elementi di $S$ che annullano a sinistra $x$. stesso e ...
come si trova il centralizzante di un elemento in $S4$? facendo i calcoli?
Sia $f : ZZ_n -> ZZ_n$, con $[x]_n |-> [6x+7]_n$. Dire per quali $n in NN$ $f$ è iniettiva.
Per $ZZ_3$, $f$ non è iniettiva, infatti [tex]f([0]_3)=[1]_3[/tex] e [tex]f([1]_3)=[1]_3[/tex],
mentre per $ZZ_4$ e $ZZ_5$ la funzione è iniettiva.
All'inizio pensavo che la non iniettività dipendesse dai campi $ZZ_n$ con $n$ numero primo,
ma $ZZ_5$ è un campo eppure $f$ è iniettiva.... ...

Ciao a tutti volevo un parere circa questa questione:
Considero [tex]H_i=\{ \sigma \in A_n | \sigma(i)=i\} \cong A_{n-1}[/tex]. Il mio intento è provare gli $H_i$ son tutti coniugati tra loro, ovvero che [tex]\tau H_i \tau^{-1}=H_{\tau(i)}[/tex]. Sto in pratica richiedendo che esista in [tex]\tau H_i \tau^{-1}[/tex] una permutazione che mi fissa $\tau(i)$, cosa che è ovviamente vera per tutte le permutazioni di [tex]\tau H_i \tau^{-1}[/tex].
Basta osservare questo per ...

All'interno della logica proposizionale :
SI definisce dimostrazione di una formula $A$ una successione finita di formule $A_1$,$A_2$,...,$A_n$ tale che $A_n = A$ \( \forall i (1\leqslant i \leqslant n) \) o $A_i$ è un assioma o è la conclusione tramite Modus Ponens di due formule precedenti nella successione.
Sia \(\Gamma \) un insieme di formule e A una formula.
Si definisce deduzione di una formula ...
Sia [tex](A,+,*)[/tex] un anello e sia [tex]a \in A, a \ne 0[/tex]. [tex]a[/tex] viene detto divisore dello zero se [tex]\exists b \in A,b \ne 0[/tex] tale che [tex]a*b=0[/tex].
In $ZZ_6$ i divisori dello zero dovrebbero (uso il condizionale perchè ho dei dubbi): [tex][2]_6,[3]_6,[4]_6[/tex], infatti:
[tex][2]_6*[3]_6=[6]_6=[0]_6[/tex]
e
[tex][4]_6*[3]_6=[12]_6=[6]_6=[0]_6[/tex]
ma
[tex][2]_6*[4]_6=[8]_6=[2]_6[/tex].
E' corretto questo?

Buongiorno (o buonasera) a tutti.
Proseguendo con lo studio di Gödel e dei teoremi d'incompletezza mi sono imbattuto nella ricorsione primitiva.
Leggo: una funzione numero-teoretica \(\displaystyle \phi (x_1, x_2, ..., x_n) \) è detta ricorsivamente definita nei termini delle funzioni numero-teoretiche \(\displaystyle \psi (x_1, x_2, ..., x_n-1)\) [il \(\displaystyle -1 \) dovrebbe essere sotto, accanto alla n, ma non riesco a scriverlo] e \(\displaystyle \mu(x_1, x_2, ..., x_n+1)\) [idem come ...

Ciao a tutti,
ho dei dubbi riguardo alcuni concetti su gruppi e sottogruppi ciclici.
Andando per gradi, per adesso posto la parte di teoria che non mi è chiara, in seguito posterò l'esercizio.
Questa è la frase di teoria che non mi è chiara:
Sia \(\displaystyle g \) un elemento di un gruppo \(\displaystyle \left (G, \cdot \right ) \). Può succedere che per qualche \(\displaystyle h \in \mathbb{N} \) sia \(\displaystyle g^h = e \) (elemento neutro di \(\displaystyle G \)): questo accade ...

Sto ancora cercando di digerire gli automorfismi di gruppi =)
1) sia dato $G$ abeliano di ordine 4. Devo costruire $Aut(G)$, cioè gli omomorfismi $G\rightarrowG$. Dunque l'idea che mi sono fatto è innanzitutto che sapendo che $G=<a,b>$, allora gli automorfismi basta che li definisco sulla base (giusto?):
- $\phi(a)=\phi(b)=1$ l'omomorfismo banale, è davvero un omomorfismo
- $\phi(a)=a, \phi(b)=b$ identità
- $\phi(a)=b, \phi(b)=a$
non dovrebbero essercene altri... ...