Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
palazzo1
Ragazzi, e questa anche a voi risulta così? $(x-1)/(2+x)>1$ Sol: $-2>xvvx>3/2$ Saluti e un grazie anticipato.
16
2 feb 2012, 17:15

Serxe
Buonasera, ho provato a fare alcuni esercizi questo pomeriggio e mi sono trovato in difficoltà su uno di questi! $g (x)$ $ = $ $(cos x^2)^(-2) + P(x)$ Determinare il polinomio P(x), di grado minimo, tale che g(x) sia di ordine maggiore di 8, per x-->0 Io ho utilizzato gli sviluppi di Mac Laurin (o Mc Laurin.. ancora devo capire il nome ), sono arrivato a scrivere: $g (x)$ $=$ $1 + x^4 - x^8/12 + o(x^8) + P(x) $ Allora ho pensato che $P(x) = -1 -x^4 + x^8/12$ fosse giusto, ...
4
1 feb 2012, 19:32

valentina921
Buonasera a tutti, ho una domanda semplice semplice per confermare la comprensione dell'argomento specificato nel titolo: data una successione $P^n$ nello spazio d-dimensionale, se questa successione è convergente, allora sono convergenti tutte le sue componenti? E' una condizione necessaria e sufficiente? Grazie in anticipo come sempre Valentina

Perito97
Devo ricavare l'equazione di una circonferenza dato il centro C(2; 6) e un punto per cui essa passa P(-7;-1) Come risultato mi viene dato (x-2)^2 + (y+6)^2 = 106 Ma l'equazione della circonferenza non è x^2 + y^2 + ax + by + c = 0 ? Grazie in anticipo

tiziana94
Shakespeare (77006) Miglior risposta
chi può darmi qualche info sui sonetti di shakespeare in generale?? grazieee!
1
3 feb 2012, 16:52

MrCrazy
Esempio Miglior risposta
Ma se il nostro coefficiente angolare è semplicemente ad esempio r=3/4 bisogna girare e cambiare di segno trasformandosi in -4/3??
1
3 feb 2012, 17:00

cappellaiomatto1
salve a tutti, mi trovo a svolgere questo integrale improprio che mi da problemi: $ int_(0)^(+oo ) ((ln(x)*sin(pix))/(x^3sqrt(1-x^3)))dx $ ora,da quel che risulta la funzione integranda è definita per $0<x<1$,cio vuol dire che non ha senso studiare l'andamento a infinito e l'integrale si riduce a $ int_(0)^(1 ) ((ln(x)*sin(pix))/(x^3sqrt(1-x^3)))dx $ ,giusto? a questo punto mi ritrovo due singolarita, in 0 e in 1. Inoltre la funzione è negativa e quindi occorre studiare la assoluta convergenza(che mi sembra che ai fini di calcolo non cambi molto,spero in ...

5mrkv
Teo. Una funzione intera e limitata deve essere costante. Con $\gamma$ circonferenza centrata in $z$: $|\frac{df(z)}{dz}|=|\frac{1}{2\pi i}\int_{\gamma}\frac{f(z')}{{z'-z}^2}dz'|<=\frac{1}{2\pi}max_{z' \in \gamma}\frac{|f(z')|}{R^2}<=\frac{C}{R}$ etc Io avrei scritto: $|\frac{df(z)}{dz}|=|\frac{1}{2\pi i}\int_{\gamma}\frac{f(z')}{{z'-z}^2}dz'|<=|\frac{1}{2\pi i}||\int_{\gamma}\frac{f(z')}{{z'-z}^2}dz'|<=\frac{1}{2\pi }|\int_{\gamma}\frac{f(z')}{{z'-z}^2}dz'|$ $<=frac{1}{2\pi}2\pi max_{z' \in \gamma}\frac{|f(z')|}{R^2}=max_{z' \in \gamma}\frac{|f(z')|}{R^2}$ etc... Dove ho tilizzato il Darbux: $|\int_{\gamma} f(z)|<=L_{\gamma} max_{z\in \gamma}|f(z)|$
5
3 feb 2012, 04:33

sradesca
come stabilisco se questa successione ha limite? nel caso come lo determino? ${a_0=2; a_(n+1)=((a_n)^2+1)/a_n$ sicuramente è crescente è a min=inf=2. grazie
5
31 gen 2012, 14:37

kate-sweet
ragazzi mi sapete spiegare cos'è,graficamente,il differenziale? è giusto dire che il differenziale è l'incremento che subisce l'ordinata di un punto che si muove sulla retta tangente al grafico della funzione, quando la sua ascissa passa da $x$ a $x+\Deltax$, cioè si incrementa di $\Deltax$?

amara920
Negli ultimi anni è sempre piu diminuito il senso di responsabilità civile e morale che sta alla base di ogni rapporto umano , sia che riguardi il campo lavorativo pubblico o privato , sia che riguardi il campo sociale . Rifletti su questo importante valore e spiega cosa fai tu per evitare il peggioramento della società dovuto proprio alla sua mancanza ... temi su questo argomento ?? Aggiunto 4 minuti più tardi: per favore vi pregoooooooooooooo
5
3 feb 2012, 13:15

Dalfi1
Ciao ragazzi, mi servirebbe qualche dritta per venire a capo di questo esercizio (e simili) Si studi la differenziabilità della funzione $f(x,y)=(x|y^2-1|)/(x^2+y^2+1)$ La difficoltà sta nel fatto che nei precedenti esercizi da me svolti, la funzione era definita per casi, quindi mi ritrovavo con degli aperti di $RR^2$ e sapevo che la funzione era differenziabile nell'aperto e mi restava da studiare se era derivabile nei punti non appartenenti all'aperto. Qui come mi comporto?
2
3 feb 2012, 15:52

matteomors
Buongiorno a tutti, vi posto un'immagine per poi descrivere il mio dubbio: Dunque, se io so che la tensione tra i capi del ramo vale $Vab$ Volt, il libro suggerisce questa soluzione per trovare la corrente sulla resistenza R1: $Vab=R1*I1+E1$ Io invece avrei messo il segno meno davanti ad $R1*I1$ in quanto il generatore ha tensione e corrente che puntano verso l'alto, di conseguenza la tensione sulla resistenza imposta dal generatore dovrebbe andare verso il basso e ...
1
3 feb 2012, 12:42

pgreco
trasforma le seguenti interrogative dirette in indirette subordinandole al verbo reggente proposto es. Quis tecum erit? --> Ignoro quis tecum futurus sit. 1)Quid egisti?-->Nescio.... 2)Quem amicum fidissimum putas?-->Dic mihi..... 3)Quando rus venies?-->Ignoro..... 4)Uter vestrum consul fuit?-->Nesciebamus..... 5)Ubi eras?-->Omnes rogavi.... 6)Cur mea verba fallacia duxistis?-->Scire cupio..... 7)Num libertatis immemores sunt?-->Rogamus..... 8)Nonne mihi respondebis?-->Ex te ...
2
3 feb 2012, 15:39

franci.anonimo
nel tempo libero???:);):pp
3
29 gen 2012, 12:25

malcon
Salve. devo svolgere un limite che fa cosi: $\lim_{x \to \-1^+}(x+1)*ln^2(x+1)$ provando con la sostituzione del $-1$ nella funzione ottengo una forma del tipo $0*0$ se non ho sbagliato, ma essendo che non sono proprio $0$ quei valori, ma sono dei valori che si avvicinano cosa posso concludere ? che fa ugualmente 0 quel limite ? chiedo in quanto sicuramente non ha senso raccogliere o fare delle operazioni sul limite in quanto non si puo riportare a un limite notevole ( se ...
3
3 feb 2012, 15:22

JackCM
Salve a tutti, avrei un problema con il seguente esercizio: Risolvere il problema di Cauchy: \[ y\prime = \frac{y^2}{x^2+1}, \qquad y(0)=y_0 \] e determinare per quali valori di \( y0 \) la soluzione e' definita nell’intervallo \( [0,\,+\infty) \). Preliminarmente ho osservato che \( f(x,y) = \frac{y^2}{x^2+1} \) e' continua, verificando cosi' il teorema di Peano per l'esistenza locale. Inoltre \( \frac{\partial f}{\partial y} \) e' altresi' continua verificando il teorema di unicita' locale ...
4
3 feb 2012, 12:45

Howard_Wolowitz
Ciao a tutti e buona mattinata. Ho un dubbio riguardo la seguente relazione di equivalenza: [tex]R := \{(a,b) \mid aRb \Leftrightarrow 2 \mid a+b\}= \{(a,b) \mid aRb \Leftrightarrow a+b=2q,q \in \mathbb{Z}\} \subseteq \mathbb{Z}x\mathbb{Z}[/tex] Un esercizio mi chiede di trovare le classi di equivalenza originate dalla stessa ed io ho ipotizzato siano le classi di resto [tex]{[0]}_{R}[/tex] e [tex]{[1]}_{R}[/tex]. Pur non riferendosi alla relazione di congruenza è corretto chiamarle classi di ...

Karozzi
Salve a tutti!! Ho avuto, durante un esame, un problema con questo esercizio. Posto il testo e la mia idea di risoluzione! Nell’ambito delle successioni, dare la definizione corrispondente ad $a_n->-oo$ Quindi, utilizzando solo la definizione, stabilire se la seguente affermazione `e vera oppure falsa: $2sqrtn -n +2->-oo$ Io avevo semplicemente pensato, quindi, di porre $a_n<-k$ , poichè essa è illimitata inferiormente. Ponendo $sqrtn =t$, ero in grado di trattare la mia ...
1
3 feb 2012, 15:53

chiarettinaa92
Salve ! sono nuova quindi mi scuso se magari dovessi aver sbagliato luogo dove postare il topic! Cmq sono una studentessa universitaria volevo chiedervi come avreste svolto questo problema... Un operaio lavora 10ore al giorno e monta 8pezzi all'ora , gli viene detto che se monta due pezzi in piu all'ora potrà lavorare un ora in meno! Gli conviene montare piu pezzi possibili in un ora? mostrare l'andamento della funzione su un grafico.. Adesso io l'avevo svolto contando che se in 10h montava ...