Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
VALE014
Salve a tutti se io ho una matrice come faccio a capire se è linearmente dipendente o indipendente? Grazie in anticipo
11
10 lug 2018, 11:51

andreaciceri96
Ciao a tutti, ieri ho cercato invano di svolgere questo esercizio: Sia $D={(x,y,z) \in RR^3 | x<x^2+y^2<y<z}$, determinare per quali $\alpha \in RR$ la funzione $f(x, y, z)=xyz(x^2 + z^2)^\alpha$ appartiene a $L^1(D)$. Per tali $\alpha$ calcolare infine $\int_D f \ dm_3$. So che $f \in L^1(D) \iff \int_D |f| \ dm_3 < +\infty$, quindi cerco di calcolare/stimare tale integrale per rispondere al primo punto. Il problema e' che proprio non riesco ad uscirne coi conti. Ho tentato vari cambiamenti di variabile per ...

simo.fildi
Salve a tutti, studiando i numeri complessi mi sono imbattuto in questa equazione \(\displaystyle z^4 z^* = (sqrt(3) + i) z \) dove \(\displaystyle z^* \) sta per il coniugato di z. qualcuno è in grado di risolverlo? grazie a tutti in anticipo
3
10 lug 2018, 15:00

anto_zoolander
Ciao Sto iniziando a studiare le forme differenziali lineari e sto cercando di capirne un po’ il significato o quantomeno se rappresentino qualcosa che non sia solo formale. Io ho fatto la costruzione prendendo uno spazio euclideo $E(V)$ un aperto $U$ di $E$ e il duale di $V$ chiamando forma differenziale una qualsiasi applicazione $omega:U->V^star$ Posto $B={dx_1,...,dx_n}$ base di $V^(star)$ Una forma differenziale sarà del tipo ...

Frank983
Ciao, vorrei sapere se sono giuste le matrici $Mr$ e $Rs$ che ho fatto. $Mr=$ [1,1,-1,0,0,0] [0,0,1,-1,0,1] [0,-1,0,0,1,-1] $Rs=$ [9,-1,-3] [-1,5,0] [-3,0,9]
11
8 lug 2018, 18:07

rdlf95
salve ragazzi! Stavo cercando di risolvere un vecchio tema d'esame d'esame del mio corso quando mi viene fatta una richiesta che non riesco a sbrigliare. Sia $T$ l'operatore definito $T(x,y,z)=(z,-x,-y) $, determinare una base ortonormale dello spazio tridimensionale alla quale la matrice associata a $T$ è in forma canonica. La mia idea (probabilmente sbagliata) sarebbe quella di trovare la matrice associata a $T$ nella base canonica, successivamente ...
1
7 lug 2018, 12:44

eccelsius
Buonasera, ho dei dubbi su come calcolare gli integrali impropri. Potreste darmi delle delucidazioni Facendo un esempio generale: Dato $f(x), Dom f(x)=(-\infty,c)uu(c,+\infty)$ (il dominio l'ho fatto così in modo tale che si abbia un punto c in cui la funzione non è definita). $\int_a^bf(x)dx$ CASO 1: Se solo uno fra a o b sono $pm\infty$ oppure c (estremo non compreso del dominio). esem: $\int_a^cf(x)dx$ oppure $\int_a^(+\infty)f(x)dx$ Si fa il limite dell'integrale definito considerando l'estremo che non fa ...
3
10 lug 2018, 18:42

fierropi
Salve, cortesemente se qualcuno potrebbe scrivere i passaggi per risolvere la seguente equazione trigonometrica: 3 [1 - sen(x)cos(x)] + 2 sen(x) = sen(x)sen(2x) Grazie tante in anticipo
6
9 lug 2018, 15:14

Antonio_80
Non sto capendo le ultime uguaglianze che sono scritte in fondo alla prima pagina, che sembrano essere legate alla somma vettoriale in alto a destra della seconda immagine, si tratta delle seguenti uguaglianze: $(V_B)/(sin(pi/2 - varphi))= (V_A)/(sin psi)$ ed $ (omega_2 bar(AB))/(sin(pi/2-theta))=(V_A)/(sin psi)$ Non sto riuscendo a ricostruire il puzzle che nella soluzione porta a scrivere queste formule Help!

skuola.01
Mi servirebbe la traduzione di questa versione di greco del libro Καιρός. Grazie mille in anticipo.
1
10 lug 2018, 11:04

Lorenz90
Dovrei studiare la derivabilità della seguente funzione, nel punto $x_(0)=0$ e - in caso affermativo - calcolarne esplicitamente la derivata: $f(x)= \{((sin(x^3-x^2+8x^4))/(x+3x^2)), (0):}$ Preciso che la prima parte della funzione $f(x)$ è definita per $x!=0$ la seconda per $x=0$ Come procedere con lo studio della derivabilità di questo genere di funzione ("definita a tratti")?? Grazie!!
3
26 giu 2018, 00:09

Drazen77
Un ragno con competenze matematiche ha tessuto una ragnatela formata da segmenti rettilinei, le cui lunghezze sono tutte numeri interi. Quanto vale x?
5
9 lug 2018, 15:47

Antonio_80
Nel seguente esercizio: Nella soluzione, capisco quando scrive: $a cosalpha + a sinalpha = h $ perché è ovvio considerare quegli angoli in base alla rotazione e quindi in base alla velocità angolare $omega$. Ma non capisco come ci arriva a scrivere la seguente espressione: $(cos alpha + senalpha)^2 = 1+sen2alpha = (h^2)/(a^2)$ Altra cosa che non capisco è quando dice che Dal triangolo vettoriale delle velocità si ricava: $omega_1 bar(AB)= V_A sin alpha$ ed $V_B = V_A cos alpha$ Sulla base ...

soonerorlater
ciao a tutti vi espongo il mio problema: l'estate scorsa, quando avevo 17 anni (ora ne ho 18 e l'anno prossimo vado in quinta), andai in svizzera con la moto. ero pienamente consapevole dei limiti di velocità svizzeri e di quanto fossero severi su di essi, perciò prestavo un'attenzione quasi maniacale. tuttavia incappo in un autovelox... più di 25 Km/h sopra il limite in zona 30 Km/h (mannaggia a me, non vidi il cartello ) e senza star li a farla troppo lunga mi becco denuncia penale con ...

paulwnn
1) Trova i punti A e B di intersezione tra la circonferenza di equazione x^2+y^2+4x-9y-7=0 e la retta passante per (1;1/2) e (7;5) e calcola la misura di AB. 2)Scrivi l'equazione della circonferenza tangente agli assi cartesiani e con centro nel punto C(-2;2)
2
10 lug 2018, 12:11

NoemiD99
Devo recuperare tutti e cinque gli anni. Consigli su come preparare un adeguato piano di studi senza un tutor? Vivendo all'estero mi è impossibile, per ovvie ragioni, averne uno. Potrebbe essere utile acquistare tutti i libri e ripartire da lì o sarebbe impossibile e poco intelligente? Non vorrei fossilizzarmi troppo in argomenti 'poco utili' e finire con il fare un mappazzone inutile e incomprensibile ma al tempo stesso non voglio essere poco superficiale perché sono ben cosciente del fatto ...
1
10 lug 2018, 14:12

Lelouko
Buongiorno a tutti, ho avuto un problema con la premessa iniziale di questo esercizio, dove devo usare il teorema della divergenza per calcolare il prodotto scalare tra il campo vettoriale F e il suo versore normale n sulla frontiera di un volume $\Omega$. $\Omega$ è il dominio poggiato sopra il piano $z=0$, interno alla superficie $x^2+y^2=4$, esterno a $z=sqrt(x^2+y^2)$. Allora provando a fare il disegno trovo che il dominio è compreso tra un cilindro e un ...
1
10 lug 2018, 14:02

CarfRip
Salve, l'esercizio in questione mi chiede se i due sottospazi $U = {((x), (y), (z)) in RR^3: x − 8z = 0}$ e $W = Span(3t+1, 3+t, 2t-2) sube RR_3[t]$ hanno stessa dimensione. Dovrebbe essere una cavolata ma mi è sorto un dubbio. In linea teorica dovrebbe essere chiaro che $dim(U)=1$, mentre al secondo sottospazio possiamo associare la matrice $M_W=((1, 3, -2), (3, 1, 2), (0, 0, 0))$ che ridotta a scala ci mostra come $dim(W)=2$, infatti $M_W=((1, 3, -2), (0, -8, 8), (0, 0, 0))$. Il fatto è che, oltre a sembrarmi una soluzione troppo semplice, parliamo due sottospazi diversi, ...
6
9 lug 2018, 18:43

HowardRoark
Devo risolvere il seguente sistema: $y^2 +(3-sqrt(5))xy -3sqrt(5)x^2=0$ $y^2 +(1-sqrt(5))xy - 3sqrt(5)x^2 =0$ Pongo $y =tx$, sostituisco e successivamente divido ambo le equazioni per $x^2$ Giungo al seguente: $ t^2 +(3-sqrt(5))t - 3sqrt(5) = 0$ $ t^2 + (1-sqrt(5))t -3sqrt(5) = 0 $ Risolvo quindi le due equazioni di secondo grado per trovare le soluzioni comuni; per ricavarmi perciò la $y$ sostituendo $t$ nella funzione $y=tx$ 1) Come soluzioni della prima equazione trovo: $t(1) = sqrt(5)$ e ...
4
10 lug 2018, 12:15

TS778LB
Dopo aver dimostrato la relazione: $ \vecP_\{Omega}=\vecr_C\wedgeM\vecv_C+\vecP_C $ che esprime il momento angolare totale rispetto ad un polo $ \Omega $ fisso come somma del momento che avrebbe il sistema se fosse concentrato in un punto di massa pari alla massa totale $ M $ del sistema ed individuato dal vettore $ \vecr_C $ in un riferimento fisso e del momento angolare totale del sistema rispetto ad un riferimento con centro in $ C $ ed assi che traslano rispetto a quelli del ...