Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Sk_Anonymous
Ciao a tutti, all'esame di fisica mi è capitato questo esercizio e sono andato in crisi. Verificare se il campo di forse è conservativo: $F=-alpha{(2xz+y^2)*i+3y^2*j+(2xy+z^2)*k}$ Uno dei modi di verificare se il campo di forze è conservativo è di appurare che il rotore sia nullo: $rot(F)=nablaxF=0$ quindi $((delFz)/(dely)-(delFy)/(delz))*i+((delFx)/(delz)-(delFz)/(delx))*j+((delFy)/(delx)-(delFx)/(dely))*k=0$ $Fx=-2alphaxz*i-alphay^2*i$, $Fy=-3alphay^2*j$,$Fz=-2alphaxy*k-alphaz^2*k$ $(delFz)/(dely)=-2alphax*k$,$(delFy)/(delz)=0$,$(delFx)/(delz)=-2alphax*i$,$(delFz)/(delx)=-2alphay*k$,$(delFy)/(delx)=0$,$(delFx)/(dely)=-2alphay*j$ per cui ...

dark.hero
Ciao a tutti ho questa funzione $ f(x,y)=sqrt((x-2)^2 +y^2)$ e devo trovare i punti di minimo e massimo assunti nel dominio del triangolo di vertici $(2,-2)$,$(-4,4)$,$(-4,2)$ ho trovato che il triangolo è l'area compresa tra le rette $ {( y>=-2 ),( x >= -4 ),( y<=-x ) } $ ho pensato di procedere annullando il gradiente di f e verificare se i punti trovati appartengono al triangolo: non ottengo risultati. ho provato a sostituire le equazioni delle rette del triangolo nella funzione: ...
20
25 gen 2011, 13:08

kotek
Salve a tutti, avrei un dubbio su una parte di un problema, ora lo enuncio: "Questo signore John Massis, fece un esperimento singolare: riuscì a muovere due carrozze ferroviarie fissando ai suoi denti un uncino che a sua volta era legato a una corda, che era fissata, all'altro estremo a un gancio di una delle due carrozze Le carrozze pesavano 700.000 N. Lui si teneva con le mani ai binari e si piegava all'indietro. Supponiamo che ai suoi denti Massis riuscisse a sviluppare una forze pari a ...

DiegoAlberto91
Ciao a tutti ragazzi sono nuovo su questo forum e sono in difficoltà con qualche esercizio di fisica..l'esercizio è questo: un punto materiale poggia sulla sommità di un piano inclinato alfa=61.4°. Al piano inclinato viene impressa un'accelerazione A costante nello stesso verso del moto del blocchetto. Determinare la minima accelerazione A del piano inclinato affinchè il punto materiale resti in quiete rispetto al piano inclinato, assumendo un coeff di attrito statico pari a 0.1. ho provato ...

ansioso
$int_{}^{} \frac{3x+2x}{5-x^2+x^3}log(5-x^2+x^3) dx=1/2 log^2(5-x^2+x^3)+c$ Questo è l'integrale e il relativo risultato riportato dal libro... Osservandolo noto che è del tipo $int_{}^{} \frac{f^{\prime}(x)}{f(x)}logf(x)$... integrali di questo tipo si risolvono tramite la formula $int_{}^{} nlog^nf(x)\frac{f^{\prime}(x)}{f(x)}=log^(n+1)f(x)+c $ Se quando detto è vero... quel' "$1/2 log^2...$" da dove esce?
4
26 gen 2011, 11:41

laurettas2
Ciao a tutti devo risolvere un integrale con i residui e mi trovo davanti ad un intoppo $ int_(-oo )^(+oo ) 1 // (x^2+x+4)^2 $ inizialmente ho calcolato le singolarità che sono $ (-1 pm i sqrt(15) )//2 $ generalmente negli esercizi riconoscevo nelle soluzioni complesse l'argomento, che in genere veniva sempre qualcosa di facile tipo $ pi//3 $ e poi andavo ad aggiungere $ kpi $ per ogni soluzione ottenendo 4 radici distinte. In questo caso non riesco a scrivere le due soluzioni con ...
5
21 gen 2011, 17:54

mateita
1°PROBLEMA un triangolo isoscele, inscritto in una circonferenza, ha per base una corda lunga 48 cm la cui distanza dal centro è 18cm. sapendo che il centro O della circonferenza è interno al triangolo, calcola l'area del triangolo. il risultato deve venire: 1152 cm2 2°PROBLEMA un triangolo isoscele inscritto in una circonferenza di centro O e raggio lungo 14,5cm ha per base una corda lunga 28,6cm. sapendo che il centro O della circonferenza è esterno al triangolo calcola l'area del ...
1
26 gen 2011, 14:22

Seneca1
Sia $(E,d)$ uno spazio metrico, $C subseteq E$. $C$ è chiuso $Rightarrow$ $AA (x_n)_n$ convergente , con $x_n in C$ si ha $lim_n x_n = bar x in C$ Vale anche il viceversa, ma studiando la dimostrazione di questa implicazione, non ero sicuro di una cosa. Infatti, sia $C$ chiuso e $(x_n)_n$ una successione convergente, a valori in $C$. Devo dimostrare che il limite $bar x$ appartiene a ...
19
21 gen 2011, 08:51

mbroz1
Ciao a tutti! Ho un problema nel determinare il carattere di questa serie: $\sum_{n=1}^infty (sqrt(1+sen(3/n)) -1)*(e^(1/n) -1) $ Poichè non ho una soluzione di riferimento, ho pensato che 1) $ (e^(1/n) - 1) \sim 1/n $ 2) $(sqrt(1+sen(3/n)) -1) \sim 3/n $ Per cui la serie da calcolare diventa $\sum_{n=1}^infty 3/(n^2) $ Che converge. Volevo chiedervi se il mio ragionamento fosse esatto e, nel caso contrario, se potreste darmi qualche "dritta" nello studio di serie di questo tipo. Vi ringrazio in anticipo. Saluti!!
2
25 gen 2011, 19:48

b.cesko
Trovare l' equazione del cono rotondo di vertice V=(0,0,0) avente per asse la retta x=y=z e apertura Pigreco/4. Scrivere inoltre l'equazione del piano che tagli il cono secondo una parabola.
6
25 gen 2011, 11:46

ansioso
$int \frac{x^2-3x+1}{1-x}dx=-1/2x^2+2x+log|x-1|+c$ lo svolgo facendo la divisione tra polinomi e mi ritrovo che numeratore diviso denominatore ha quoziente $Q=-x+2$ e resto $R=-1$ da cui... $int -x+2dx + int \frac{-1}{1-x}dx=int -xdx+int 2dx + int \frac{-1}{1-x}dx=-\frac{x^2}{2}+ 2x+log|1-x|+c$ il contenuto del valore assoluto lo sbaglio io o il libro? Dato che ho applicato la formula $int \frac{f^{\prime}(x)}{f(x)}dx=log|f(x)|+c$ e il denominatore è $1-x$ mi viene da pensare che è il libro... giusto?
4
26 gen 2011, 12:32

Alextorm1
Sia [tex]f: \mathbb{R} \rightarrow \mathbb{R}[/tex] derivabile. Sia [tex]\lim_{x \rightarrow + \infty} (f(x) -2x) = 1[/tex] e [tex]\lim_{x \rightarrow - \infty} (f(x)+x)=-1[/tex]. Provare che [tex]]-1,2[ \; \subseteq f'(\mathbb{R})[/tex]. Se provo che [tex]\forall \mu \in \; ]-1,2[ \, , \exists x_1,x_2 \in \mathbb{R}[/tex] t.c. [tex]\dfrac{f(x_2)-f(x_1)}{x_2-x_1} = \mu[/tex] allora il teo. di Lagrange mi garantisce l'esistenza di un [tex]s \in \mathbb{R}[/tex] t.c. [tex]f'(s)=\mu[/tex] e ...
4
26 gen 2011, 09:33

Seneca1
Esercizio:(malvagio) Determinare tutti e soli i sottoinsiemi $A$ di $RR$ tali che $A$ sia limitato e il derivato $D(A)$ sia vuoto. Idee: Gli insiemi finiti sono limitati e privi di punti di accumulazione (un insieme che non ha infiniti elementi non può avere punti di accumulazione). Viceversa, sia $A$ un insieme limitato privo di punti di accumulazione, devo dimostrare che è finito. Per assurdo: se l'insieme fosse ...
13
25 gen 2011, 17:52

capricciosa1
ragazzi ho 2 esercizi pressocchè simili riguardanti la retta di regressioe xò nn mi è ben kiaro il punto in cui mi si kiede di calcolare l'intervallo di confidenza...vi posto le tracce: 1)Sono state misurate su un campione di 6 famiglie l'altezza dei padri (P) e de figli (F) ∑p_i =10,41 ∑f_i = 10.65 ∑pf= 18,53 ∑p2 = 18,13 ∑f2= 18,95 a) calcolare l'intervallo di confidenz per l'altezza dei padri; b) calcolare l'intervallo di confidenza per l'altezza di figli.
10
24 gen 2011, 11:22

gramschmidt91
Ciao ragazzi!! Sto preparando l'esame di Geometria e nn riesco ad andare avanti perchè mi sono bloccato sull'angolo tra due vettori. La definizione mi dice che è l'operatore unitario che assegnati due vettori "u" e "v" $ in V $ sia così definito: $ hat(u , v) $ : $ Vrarr V $ tale che 1) Conserva l'orientamento ( $ O^+(n) $ ) 2) $ f(u)= <{v}> $ Ma ora come dimostro l'esistenza e unicità dell'angolo? e come arrivo a definire il $ cos(x)= (X*Y)/(||X||||Y|| ) $ ?

fulviowinter90
non riesco a svolgere questo integrale indefinito: $int sen^2x$ ecco i miei passaggi svolgendolo per parti: $intsenx*senx$ $-senxcosx+intcos^2x$ sviluppo $cos^2x$ $intcos^2=intcsx*cosx=cosxsenx+intsen^2x$ qui sorge il mio problema....ovvero mi ritrovo di nuovo con $intsen^2x$ e ripartirei da capo... grazie per l'aiuto!!

Fabrizio84901
salve a tutti ho da dimostrare che la successione di funzioni $ f_n (x)= ln(x^n+1) $ converge uniformemente in $[0,a]$ con $ 0<a<1 $ e che non converge uniformemente in $[0,1)$ ho dimostrato che converge uniformemente in $[0,a]$, questo non dovrebbe dimostrare che converge uniformemente in $[0,1)$ dato che $0<a<1$ ? ammettendo che non converga in $[0,1)$ come posso fare a dimostrarlo? so che per il forum dovrei iniziare a ...

hubabuba
Salve a tutti! Avrei bisogna di una mano per questo esercizio. Grazie. Sia $ E|F $ un'estensione di campi, e siano $ a,b in E $, con $ a $ algebrico su $ F $ e $ b $ trascendente su $ F $. Si provi che $ F[a] nn F<strong>= F $ .

bestiedda2
sia[tex]f:A \subset X \rightarrow Y[/tex] un'applicazione continua che si estende alla chiusura di[tex]A[/tex]. Si dimostri che, se[tex]Y[/tex] è di Hausdorff, allora l'estensione è unica. Secondo voi, in questo problema si intende che l'estensione sia continua? supponendo che l'estensione debba essere continua, io ho ragionato così: supponiamo per assurdo che[tex]f[/tex] possieda due estensioni continue e distinte[tex]g(x),h(x)[/tex]: sia [tex]x \in D(A) \setminus A[/tex] tale ...

obelix23
ho questo limite che mi chiede per quali valori di £ è ben definito $ lim_(x -> <0>) $ (f^-1 (x)-x)/x^£ ) dove $f(x)=(x/2)+(1/2)tangx+x^2 devo trovare il polinomio di Taylor della funzione inversa di f(x).IL mio problema è che non ho capito bene come si trova la derivata della funzione inversa!Se qualcuno me lo potrebbe spiegare grazie
3
23 gen 2011, 23:17