Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
indovina
Ciao a tutti. E' da pochissimo che ho cominciato corpi rigidi, moti di puro rotolamento e Co. Ho provato a dare una occhiata ai vari problemi postati da altri utenti per vedere se era postato o meno, tuttavia ho trovato qualche imput per cominciare questo esercizio: TESTO: Un cilindro di massa m e raggio r viene lanciato lungo un piano scabro, inclinato di 30° rispetto all'orizzontale, con velocità iniziale di $v_0 = 5 m/s$. Esso rotolando senza strisciare, raggiunge la sommità ...

nigel1
Allora, devo risolvere il seguente sistema lineare: $\{(x+y+Kz=1),(x+Ky+z=K),(Kx+y+z=K):}$ chiamo A la matrice $((1,1,K),(1,K,1),(K,1,1))$ e b $((1),(K),(K))$ vedo che il determinante di A si annulla solo per K=1 Rango di A = rango di Ab, quindi trovo le soluzioni (x, y e z) con cramer, con K diverso da 1 poi devo vedere cosa succede con K=1 il determinante di A si annulla sempre...praticamente mi resta solo un numero 1, quindi vuol dire che ha rango 1? stessa cosa per il det di Ab, che ...
3
23 giu 2011, 16:49

Aint
un calciatore calcia una pietra orizzontalmente da un altura di 40 m mandandola in una pozza d'acqua. se il giocatore ode il rumore dell'impatto 3 scondi dopo il calcio, qual'era la velocità iniziale dela pietra??? assumere che la velocità del suono in aria sia 343 m/s. allora noi, abbiamo trovato i vari tempi impostando Ttot= tempo caduta + tempo ritorno del suono abbiamo ipotizzato Vyiniziale=0 perché è il punto più alto di un moto parabolico... e con l'equazione del moto in y ...

ansioso
ciao ragazzi non mi è chiaro come si possa risolvere un integrale con denominatore il cui discriminante sia $<0$ $int x/(x^2+2x+4)dx$ sul libro riporta questo esempio e aggiunge dicendo che si scompone la frazione in due addenti: il primo deve avere come numeratore, la derivata del denominatore il secondo deve avere una costante al numeratore $int x/(x^2+2x+4)dx=1/2 int (2x+2)/(x^2+2x+4)dx-int 1/(x^2+2x+4)$ La mia domanda è: perchè ha moltiplicato per $1/2$ il primo addendo e per $-1$ il ...
4
23 giu 2011, 18:48

monkybonky
salve a tutti ho svolto questo esercizio: data la funzione $f(x,y)=y^3+x^2y-2x-4y$ il dominio della funzione è $R^2$ per trovare gli eventuali punti estremali mi sono calcolato le derivate parziali in funzione di x e y $fx=2xy-2$ e $fy=3y^2+x^2-4$ ho messo a sistema le due derivate parziali e mi sono ricavato le soluzioni per $fx=0$ e $fy=0$ le soluzionei sono $A=(1,1)$ e $B=(-1;-1)$ ho calcolato le derivate successive ...
1
23 giu 2011, 17:51

enr87
sappiamo che l'entropia dell'universo, inteso come ambiente + sistema, nel caso di processi irreversibili aumenta, ovvero $Delta S_u > 0$. nel mio libro si scrive che per un'adiabatica, indipendentemente che sia reversibile o irreversibile, la variazione di entropia dell'ambiente è nulla, ma non capisco perchè. il calore scambiato è nullo, quindi nel caso di trasformazione reversibile il sistema non subisce variazioni di entropia. ma come faccio a calcolare la variazione di entropia ...

Sk_Anonymous
Ciao, sto preparando l'esame di algebra lineare e volevo essere sicuro su delle cose. Due vettori linearmente dipendenti sono dei vettori che hanno la stessa direzione? Viceversa, due vettori linearmente indipendenti, sono dei vettori che non sono paralleli, vero? Quindi una base di uno spazio vettoriale, dal punto di vista geometrico, può essere costituita anche da due assi che non sono ortogonali tra di loro, ma che comunque non sono paralleli? Cioè, le basi di uno spazio vettoriale sono dei ...

fritjof
CIAO A TUTTI dopo molto tempo ho rimesso mano al python e ho tirato fuori un programmino niente male che vorrei condividere con voi del forum.Si tratta di un eseguibile che conta le distanze tra numeri primi consecutivi.Ad esempio dopo quasi 20 minuti che il mio mac contava ho scoperto che la distanza massima entro i primi

crg1
Ho incontrato questa equazione differenziale: $x^2y'' - xy' - 3y = 2log(x)$ Con le condizioni: $y(1) = 0; y'(1) = -2$ In questo caso, immagino che dovrei usare il metodo della variazione delle costanti; il problema sta nel trovare le soluzioni y1 e y2 dell'equazione omogenea associata - come si fa a trovare queste soluzioni nel caso di un'equazione differenziale di secondo ordine, a coefficienti non costanti?
9
10 giu 2011, 00:15

egregio
considerata in $R^2$ la retta r : y=0 e la topologia di $R^2$ avente per base la famiglia delle rette parallele ad r. Dire in quali punti la funzione f(x,y)=(x,2x) è continua. Una funzione è continua in un punto se la controimmagine di un intorno di f(x) è un intorno di x, o analogamente se l'immagine di un intorno di x è contenuto in un intorno di f(x). Visto che siamo in dimensione 2, devo usare il teorema fondamentale secondo il quale una funzione è continua se ...
14
22 giu 2011, 17:31

£l3oNoR@
una cellula dell'epidermite ha un diametro medio di 0.000025 m. Una porzione di tessuto cutaneo ha un are di 1.00 cm(quadrati) ed è spessa 0.10 mm. Esprimi il volume di una cellula utilizzando la notazione scientifica. Calcola l'ordine di grandezza del numero di cellule che occupano la porzione di tessuto. Grazie a chi mi aiuta! :D
1
23 giu 2011, 15:44

milanistamalato
ciao a tutti, ho questa funzione: $ f(x) = int_(0)^(log(1+x)) e^(-t^2) dt $ e devo fare la derivata. Io ho risolto così: $ f'(x) = e^-((log(1+x))^2) 1/(1+x) $ , però non mi torna la soluzione, dove sbaglio?

xXStephXx
Trovare tutte le coppie ordinate positive (x,y) che soddisfano l’equazione [tex]xy +5(x +y) = 2005[/tex]
15
22 giu 2011, 20:31

Gian741
buona sera a tutti devo calcolare il seguente limite $ lim_((x,y)->(0,0)$ $ (xy) / sqrt(x^2+y^2 ) $ la soluzione del libro parte con $ |x|= sqrt(x^2) <= sqrt(x^2+y^2) $ poi procede con $ (|x|) / (sqrt(x^2+y^2)) <= 1 $ ed infine $|f(x)| = (|x||y|) / (sqrt(x^2+y^2)) <= |y| $ poi per il Teorema del doppio confronto si conclude che il limite è 0 perchè parto da $|x|$? è il primo esercizio che faccio e sono già in panico chi mi aiuta a ragionare.. grazie
6
22 giu 2011, 14:47

rubikk
Salve a tutti, non sono sicuro di avere scelto la sezione giusta quindi se ho sbagliato spero che mi perdonerete Ad ogni modo, avrei bisogno che qualcuno mi aiutasse a capire se quello che ho fatto è corretto. In sostanza devo calcolare la trasformata Z di una funzione definita come segue: $f(k) = {(0, k<0), (k, 0<=k<5), (5, k>=5):}$ Ho pensato di analizzare separatamente le due parti in cui la funzione ha valore diverso da zero applicando la defizione di trasformata Z come segue: $\lim_{N \to \infty}((\sum_{k=0}^4 k*z^-k) + (5*\sum_{k=5}^N z^-k))$ Di ...
6
23 giu 2011, 11:02

nuwanda1
Ecco l'esercizio che non mi torna: "Sia $V$ uno spazio vettoriale reale di dimensione 2. Sia $f$ un 'applicazione invertibile e sia Z un sottospazio $f$-invariante di $V$. Esiste una decomposizione in somma diretta $V=Z+Z'$ tale che anche $Z'$ sia $f$-invariante?? Io purtroppo non ho idee...
9
19 giu 2011, 22:58

giovalupo
dove posso trovare la soluzione del problema di matematica pni?
1
23 giu 2011, 10:14

lezan
Non se sia la sezione giusta, comunque sto cercando la dimostrazione del teorema che afferma che una matrice è riducibile se e solo se il grafo di adiacenza ad esso associato non è fortemente connesso. Purtroppo non ho nessuno libro a portata di mano, e su internet non l'ho trovata. Se qualcuno l'avesse, mi farebbe veramente un piacere se la postasse. Grazie.

dissonance
Secondo la legge di Faraday, una spira conduttrice in un campo magnetico variabile nel tempo è interessata da una forza elettromotrice. Ora la legge di Lenz assicura che la corrente indotta da tale f.e.m. è diretta in modo tale da opporsi alla variazione di flusso magnetico: se questo sta diminuendo, ad esempio, il circuito a sua volta genererà un campo magnetico che produce un flusso positivo, per cercare di mantenere il bilancio magnetico in pareggio. E' facile rendersi conto che, ...

Pozzetto1
Buongiorno a tutti. Riporto il testo dell'esercizio. Dati $a$ $b$ interi,supponiamo che $1$ sia combinazione lineare di $a$ $b$. Dimostrare che $mcd(a,b)=1$ Suggerimenti?