Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
axpgn
$(\text(EVE))/(\text(DID))=\text(.TALKTALKTALK...)$ Cordialmente, Alex
3
18 gen 2021, 23:05

mostgiochi
Dovrei risolvere questo limite: $$\frac{sin(x^4+y^4)+2xyarctan(xy)}{x^2+y^2}$$ per $(x, y)$ che tende a $(0, 0)$ Lo vorrei risolvere con le seguenti maggiorazioni: $$0\leq\frac{|sin(x^4+y^4)+2xyarctan(xy)|}{x^2+y^2}\leq\frac{|sin(x^4+y^4)|+|2xyarctan(xy)|}{x^2+y^2}\leq\frac{1+\pi|xy|}{x^2+y^2}$$ che tende ad $\infty$. Cosa sbaglio? Grazie.
3
21 gen 2021, 22:32

Poliedro
Qualcuno riuscirebbe a darmi una mano in questa espressione di matematica per favore?  Aggiunto 29 secondi più tardi: Grazie mille a tutti quelli che risponderanno! Aggiunto 2 ore 34 minuti più tardi:
3
20 gen 2021, 16:06

mostgiochi
Ho provato a risolvere questo esercizio ma sto avendo delle difficoltà. Devo studiare il limite per $(x, y) \rightarrow (0, 0)$ di $$\frac{|y|^\alpha \sin(xy)}{(x^2+y^2)^{3/2}}$$ al variare del parametro $\alpha$. Vorrei farlo con le maggiorazioni. Dato che $$sin(xy)\leq1$$ posso scrivere: $$\frac{|y|^\alpha \sin(xy)}{(x^2+y^2)^{3/2}} \leq \frac{|y|^\alpha}{(x^2+y^2)^{3/2}}$$ Poi, $z^{3/2}$ è ...
10
27 dic 2020, 19:31

otta96
Penso che il baricentro di un insieme convesso debba appartenere all'insieme, ma come si dimostra? Preso un insieme convesso $A\subseteqRR^n$, questo dovrebbe essere misurabile perchè $A\setminus\text{int}(A)\subseteq\partialA$ e immagino che $\partialA$ abbia misura nulla anche se non saprei esattamente perchè. Forse ci si può basare sul fatto che credo sia vero che $\partialA$ si possa scrivere come unione di un numero finito di grafici di funzioni convesse (eventualmente ruotati) di cui ...
4
5 gen 2021, 16:32

fabiofrutti94
Salve, consideriamo l'insieme dei numeri complessi del tipo: \[ X=\{ z \in \mathbb{C} \;| \; z= \frac{a-i}{a^2+1} \;\; t.c. \;\; a \in \mathbb{R}\} \] vorrei rappresentare l'insieme nel piano cartesiano. Ho visto che tale insieme rappresenta i punti della circonferenza di centro $(0,-1/2)$ e raggio $1/2$, perché rappresentano tutti i punti del tipo $(\frac{a}{a^2+1},\frac{-1}{a^2+1})$ che soddisfano la relazione $(y+1/2)^2+x^2=1/4$. La mia domanda è: se uno non riesce ad osservare che soddisfano ...

Pasquale 90
Buongiorno, ho un problema sulla dimostrazione del presente teorema: In tal caso Definizione: Dato uno spazio vettoriale $V$ di dimensione $n$, una successione di applicazione $psi_1, psi_2, ... , psi_n :V to K$ si dice un sistema di coordinate se l'applicazione $F:V to K^n, \qquad v to (psi_1(v),...,psi_n(n))^T$ è un isomorfismo lineare. Teorema: Sia $V$ spazio vettoriale di dimensione finita $n$. Per ogni base $v_1, ... , v_n$ di $V$ esiste un unico sistema di ...

damon123
Buonasera a tutti avrei dei dubbi sui seguenti esercizi: 1)Siano A=R\Q e B=(0,1), A∩B ammette massimo? il mio ragionamento è stato: in A si trovano solo i numeri irrazionali, il massimo dovrà essere il primo valore irrazionale che trovo "scendendo" da 1, il numero irrazionale che trovo più vicino a 1 sarà un valore contenuto in A in quanto irrazionale, contenuto in B (perché sto supponendo che esistano numeri irrazionale tra 0 e 1). esso dovrà essere un valore che appartiene all'intersezione ...
6
21 gen 2021, 00:24

sabgarg
Salve a tutti, sto avendo dei problemi nel risolvere questo esercizio sulla convergenza di processi stocastici. Spero qualcuno possa illuminarmi. Sia \( X_t = 3+a_t \ \ con \ \ a_t \sim (0,\sigma^2) i.i.d. \) Dato \( Y_n = \frac{1}{\sqrt{n+2}}\sum_{t=1}^{n} {X_t} \) A cosa converge (in distribuzione) Y quando n tende ad infinito? Io ho cominciato a scrivere il processo come \( Y_n = \frac{1}{\sqrt{n+2}}\sum_{t=1}^{n} {(3+a_t)} \) e \( Y_n = \frac{1}{\sqrt{n+2}}(3n+\sum_{t=1}^{n} ...
2
21 gen 2021, 04:14

FF71
Buongiorno vi vorrei sottoporre il seguente integrale improprio. $ int_(0)^(pi/2) ((tan(x))^alpha sin(x) ln(sinx)) / (1-(cos(x))^alpha ) dx $ Va studiata la convergenza dell'integrale al variare del parametro alpha. Ho suddiviso innanzitutto l'integrale in due addendi, il primo sarebbe l'integrale tra 0 e un certo parametro d, reale tra 0 e pi/2 e il secondo sarebbe l'integrale tra d e pi/2. Dopodiché il primo integrale mi porta a dire che la convergenza, sfruttando gli sviluppi, si ha per alpha >0, mentre per il secondo non riesco a ...
1
21 gen 2021, 12:25

Triangoloisoscele
Ciao a tutti, non ho capito molto come si risolvono le equazioni con i radicali. Qualcuno saprebbe spiegarmi, ad esempio con la risoluzione di questa equazione, come si risolvono, per favore? Grazie in anticipo per tutte le risposte!

Sfuzzone
Ciao a tutti, devo risolvere questa equazione con il metodo dell'angolo aggiunto. L'ho già risolta in 1000 altri modi (formule parametriche, metodo grafico ecc.) ma la prof. vuole quel metodo. L'equazione è: $sinx+(sqrt(2)-1)cosx-1=0$ devo usare la formula $asinx+bcosx=rsin(x+α)$ con $r=sqrt(a^2+b^2)$ e $tanα=b/a$ Trovo tangente di alfa ---> $tanα=(sqrt(2)-1)$ e alfa ---> $α=π/8+kπ$ Quello che non riesco a calcolare è r che mi esce $r=sqrt(4-2sqrt(2))$. A quel punto scrivo $sin(x+π/8)=1/sqrt(4-2sqrt(2))$ e ...
2
21 gen 2021, 00:25

Studente Anonimo
Non capisco come mai un funzionale che definisce sia ben definito in una parte della dimostrazione del teorema. Enunciato: Sia \(V\) uno spazio vettoriale reale, e \( p : V \to \mathbb{R} \) un funzionale sotto-lineare. Supponiamo il dominio di \(f\), \( D(f) \subset V \) sia un sotto-spazio vettoriale, e \( f: D(f) \to \mathbb{R} \) sia un funzionale lineare. Se \( f(x) \leq p (x) \) per ogni \( x \in D(f) \) allora esiste un funzionale lineare \( F: V \to \mathbb{R} \) tale che \[ F ...
8
Studente Anonimo
20 gen 2021, 21:01

Elfadli
Ciao a tutti qualcuno di voi mi può dire i richiami teorici della misura della lunghezza grazie mille
1
20 gen 2021, 22:54

damon123
Buongiorno a tutti, potete dirmi se il ragionamento che ho fatto su questo esercizio è corretto? l'esercizio diceva: "Siano $f(x) in C^2(RR)$ e $g(x) = |x| f(x)$. Se $lim_(x->0) f(x)/x= 0$, allora esiste $g''(0)$?" ho messo vero e come giustificazione avevo pensato: grazie alle ipotesi so che in $x_0=0$ la $f(x)$ si comporta come $x$, il che vuol dire che $g(x)$ in $x_0=0$ si comporta come $|x|x$, che è derivabile due ...
7
20 gen 2021, 13:18

Elfadli
Ciao a tutti qualcuno di voi mi dire i richiami teorici della misura della lunghezza grazie mille
1
20 gen 2021, 22:54


axpgn
Quanto fa questo prodotto infinito? [size=150]$3^(1/3)*9^(1/9)*27^(1/27)*...*(3^n)^(1/(3^n))*...$[/size] Cordialmente, Alex
6
19 gen 2021, 22:50

fabiofrutti94
Sia $A=\{v_1, v_2,v_3\}$ una base di $\mathbb{R}^3$ e sia $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ l'applicazione lineare tale che: \[ f(v_1)=v_1+2v_2 \quad f(v_2)=2v_1+v_2 \quad f(v_3)=-v_3 \] Sapendo che $f$ è autoaggiunto, l'esercizio ci chiede di trovare una base ortonormale di $\mathbb{R}^3$, rispetto al prodotto scalare canonico, formata da autovettori di $f$. Io ho calcolato $M^A(f)$ e ho trovato gli autovettori $(1,-1,0)_A, (0,0,1)_A, (1,1,0)_A$, però non posso sapere se i primi 2 ...

wattbatt
Non riesco a capire una cosa da come è formulato questo teorema. Supponiamo che il sistema sia di due sole equazioni così equivale ad una eq.diff del 2^ ordine, per capirsi meglio. Sono abituato che la soluzione generale è $y=y_o + y_p$, $y_o$ è la soluzione dell'omogenea e la trovo con il polinomio caratteristico; mentre la soluzione particolare $y_p$ la trovo con il metodo di somiglianza. Poi se è richiesto di usare le condizioni iniziali del problema di Cauchy ...
3
20 gen 2021, 16:30