Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Rosy19931
Cari ragazzi, volevo un'informazione: un esercizio mi chiede di calcolare il \(\displaystyle \lim_{n\rightarrow +\infty} n^2 \int_{0}^{+ \infty} \frac{1-cos(\frac{x}{n})}{x} e^{ -x^2} dx \) ho un'idea ma volevo chiedere se è corretta: essendo il \(\displaystyle \lim_{x\rightarrow +\infty} \frac{1-cos(x)}{x^2} = \frac{1}{2}\) allora è vero che: \(\displaystyle \frac{1-cos(\frac{x}{n})}{\frac{x^2}{n^2}} < \frac{1}{2}\) e quindi \(\displaystyle \frac{1-cos(\frac{x}{n})}{\frac{x^2}{n^2}} x e^{ ...
3
28 dic 2013, 17:32

Bilbo99
Ecco l'espressione che non mi ridà: [(-2/3)^-1*(+3/2)^2*(-2/3)^-3]:(-2/3)^-8 RISULTATO:+4/9 Grazie in anticipo e scusa del disturbo ma è l'unico esercizio per le vacanze che non sono riuscito a fare. Aggiunto 1 minuto più tardi: scusate se non si legge ma al posto della faccina ci dovrebbe essere : e la parentesi tonda
3
28 dic 2013, 14:37

Rosy19931
Cari matematici, ecco a voi un nuovo esercizio bellissimo che ci ha lasciato la professoressa di analisi reale... Calcolare il \(\displaystyle \lim_{n\rightarrow +\infty} \int_{0}^{+ \infty} (1+ \frac{x}{n})^{-n} x^{ \frac{-1}{n}} dx \) (Suggerimento: spezzare l'integrale nella somma di 2 integrali ed applicare opportunamente la disuguaglianza di Bernouilli: \(\displaystyle (1+ \frac{x}{n})^{n} \geqslant \frac{x^2}{4}, n \geqslant 2\) ) Allora, premesso che ci ho pensato un sacco oggi a ...
3
27 dic 2013, 17:06

killing_buddha
Mi sono tolto una curiosità che avrei dovuto togliermi prima, e siccome è troppo facile per postarla di là la propongo a voi. Se \(\mathcal C\) è una categoria piccola, trovare i seguenti limiti e colimiti [*:19d12gd0] \(\varprojlim {\cal C}(x,-)\)[/*:m:19d12gd0] [*:19d12gd0] \(\varprojlim {\cal C}(-,x)\)[/*:m:19d12gd0] [*:19d12gd0] \(\varinjlim {\cal C}(x,-)\)[/*:m:19d12gd0] [*:19d12gd0] \(\varinjlim {\cal C}(-,x)\)[/*:m:19d12gd0][/list:u:19d12gd0] dove \(\mathcal C(-,x)\colon ...

icaf
Come faccio a disegnare il grafico rappresentato in figura?? Le equazioni sono quelle accanto
1
28 dic 2013, 15:11

icaf
GRAFICI Miglior risposta
Sapete indicarmi il procedimento per disegnare il grafico delle funzioni presente nella foto?? Grazie
1
28 dic 2013, 13:36

ilaa!
ciao a tutti! dato il quoziente \( \mathbb{R}[x]/((x-2)^2) \) , \( g+((x-2)^2) \) con \( g=3x^3-7x+2 \) è uno 0-divisore? è nilpotente? per vedere se g è uno 0-divisore bisogna trovare un altro polinomio che moltiplicato per g dà come risultato la classe di 0, quindi \( (x-2)^2 \) o un suo multiplo. ho provato a fare la divisione tra polinomi ma non ho trovato nessun polinomio che moltiplicato per g mi da classe di 0. quindi ho dedotto che non è uno 0-divisore, di conseguenza neanche ...

DavideGenova1
Ciao, amici! Utilizzando la proprietà universale del prodotto tensoriale -nel terzo caso anche di \(M\otimes_R N\otimes_R P\) come prodotto tensoriale dei tre moduli $M$, $N$ e $P$ su $R$- sono giunto alla conclusione, spero esatta, che i seguenti isomorfismi di $R$-moduli:\[R\otimes_R M\xrightarrow{\sim}M,\quad a\otimes x\mapsto ax\]\[M\otimes_R N\xrightarrow{\sim}N\otimes_R M,\quad x\otimes y\mapsto y\otimes ...

Ariz93
Salve facendo un esercizio sul'eserciziario del Buttazzo- Acerbi, ho riscontrano un esercizio inusuale,Non volendo guardare la soluzione vi posto qui la traccia e dove sono arrivato io. \(\displaystyle \sum_{n=1}^\infty \left(\frac{n-\sqrt n}{n+1}\right)^n \) sono arrivato a dire che \(\displaystyle \left(\frac{n-\sqrt n}{n+1}\right)^n = \large e^{\large log \left(\frac{n-\sqrt n}{n+1}\right)^n}=\large e^{\large n log \left(\frac{n-\sqrt n}{n+1}\right)} \) e ho visto che asintoticamente ...
10
28 dic 2013, 11:16

teresamat1
Dimostrare che la serie $\sum_{n=1}^prop ((z+i)/(z-i))^n$ definisce una funzione olomorfa su un disco aperto di raggio 1 e centro -i. Sappiamo che una serie di potenza definisce una funzione olomorfa nel disco di convergenza. Io ho pensato che quella serie converge se $|(z+i)/(z-i)|<1$ e risolvendo questa disequazione ottengo che è soddisfatta in ${z in CC , z=u+iv | v<0 }$ In più il suo raggio di convergenza è 1. Quindi non capisco, mi basta per concludere che allora la seria definisce una funzione olomorfa su un ...
9
27 dic 2013, 13:20

siddy98
Salve a tutti Ho qualche problema nel capire il secondo principio della dinamica e la formula $ F=ma $ Supponiamo di avere un corpo $ A $ e di impartirgli una forza $ F_1 $ che produca un'accelerazione $ a_1 $, e un corpo $ B $, a cui impartiamo la stessa forza, l'accelerazione risultante è però pari ad $ a_2=\frac{a_1}{2} $. Ponendo $ A $ come unità di massa $ m $, la massa di $ B $ è dunque, per definizione, ...

floppyes
Ciao a tutti! Devo svolgere il sequente esercizio: Trova le parole palindrome in un gruppo di parola acquisite da tastiera Io ho scritto tutto quanto il codice e sembra funzionare anche bene, l'unico problema riguarda il caso in cui la parola palindroma si trova in fondo ad una frase. #include <stdio.h> #include <string.h> #define DIM 50 /* * Nome: palindroma * Scopo: Determina se una parola e' palindroma * Input: char *parola: la parola da verificare * ...
3
26 dic 2013, 19:20

ennegi
Ciao a tutti ho un problema riguardo a un esercizio di Fisica II, in cui appare questa descrizione di onda elettromagnetica: \begin{equation} \begin{cases} E_x = 0 \\ E_y = 3 (\frac{V}{m}) \sin 2\pi 6 \cdot 10^{14} (\frac{x}{v} - t) \\ E_z = 3 (\frac{V}{m}) \cos 2\pi 6 \cdot 10^{14} (\frac{x}{v} - t) \end{cases} \end{equation} Siccome un'onda elettromagnetica si presenta così di solito : \begin{equation} E_* = E_0 \sin (kx - \omega t) \end{equation} come devo trasformare la ...

niccoset
La definizione riportata sul libro di analisi è la seguente: Sia $ f:[a,b]->RR $ , $ f $ si dice lipschitziana se esiste una costante positiva $ L $ tale che $ |f(x)-f(y)|<=L|x-y| $ , $ AA x,yin RR $. Se applico la definizione al seguente esercizio: Dire se la funzione è lipschitziana $ y=x $ se $ 1<=x<=2 $ $ y=1/2 $ se $ 2<x<=3 $ La funzione non essendo continua nell'intervallo $ [1,3] $ non dovrebbe essere ...
10
27 dic 2013, 18:43

Neik0s
Ciao ragazzi... mi scuso in anticipo per come ho postato l'esercizio... ma ci sono stato dietro due ore e non riuscivo a scriverlo con ASCIIMathML. Quindi vi posto un immagine ! Vorrei saperlo fare... ma è uno di quegli esercizi che quando mi trovo davanti dico... e mho? Ricordo di averne fatto uno simile con gli sviluppi di McLaurin, ma non riesco a trovarlo... confido in voi. Grazie in anticipo, Roberto.
4
27 dic 2013, 18:10

Neik0s
Buonasera a tutti ! Sta sera vagavo sulle dispense di analisi e mi imbatto in questo calcolo integrale. Andando "a naso" ho deciso di fare come segue: $\int [sin(nx) ][sin(mx)] dx $ $m$ $^^$ $n$ interi positivi diversi tra loro. Io ho ragionato così: Ho usato le formule di Werner, ottennendo: $ 1/2 $ $\int cos(nx-mx) - cos(nx+mx) $ Ho applicato il metodo di sostituzione per la risoluzione dell'integrale ponendo : $ nx -mx = t $ Quindi: ...
4
26 dic 2013, 23:32

Gnamma1
Ragazzi una domanda scema. Quando risolvo un esercizio Sui campi vettoriali mi viene chiesto se è conservativo e lo è. A questo punto dovrei calcolare l 'integrale di linea lungo un triangolo ABC: in questo caso esso è uguale a zero perchè il campo è conservativo oppure dovrei parametrizzare ogni segmento e procedere ? Ultima cosa l'insieme di definizione e tutto R ^2 privato l origine che tipo di insieme è?
4
27 dic 2013, 23:04

Auron691
ciao a tutti, l esercizio in questione è il seguente: Un lungo filo rettilineo, disposto lungo l’asse z, è percorso da una corrente di verso concorde con quello dell’asse stesso, e di intensità variabile nel tempo secondo la legge i ( t ) = At , con A = 1,0 A/s . Calcolare, per t = 10 s : a) il modulo e le componenti Bx, By, Bz del campo B nel punto P di coordinate (1,0 m, 1,0 m, 0 ); il campo magnetico B è stato facile da calcolare, ma le componenti Bx , By e Bz come le posso ricavare? ...

franchinho
Salve, ho il seguente integrale: $ int_(-1)^(0) ln(1-x) dx $, e considerando la formula generale: $int_(a)^(b)f(x)dx=[intf(x)dx]_(a)^(b)=[F(x)]_(a)^(b)=F(b)-F(a)$, ho la seguente risoluzione: Primitiva di $ln(1-x)$: $F(x)=intln(1-x)dx$ =: integrale per sostituzione: poniamo $t=1-x$, otteniamo: $x=1-t$. $dt=-1dx$ e $dx=-1dt$ (sono le rispettive derivate??? Cioè le derivate di $x$ e di $t$??). Otteniamo: $intln(1-x)dx=-intln(t)dt$, e questo è il primo passaggio che non ho chiaro, cioè come ...
4
28 dic 2013, 11:00

3Mary3
Ciao a tutti. Sto svolgendo un esercizio in cui ho: retta r:x-2y+1=z+y-3=0 piano $\pi$ : x+y-1=0 devo trovare un piano $\sigma$ perpendicolare a $\pi$ e parallelo ad r. Ho proceduto così: Ho preso i parametri direttori di $\pi$ (1,1,0) ho trovato un vettore perpendicolare (1,-1,1) ed ho creato un fascio di piani contenenti $\sigma$ perpendicolari a $\pi$ : x-y+z+d=0. Adesso non ho idea di come procedere, so che per essere ...
1
27 dic 2013, 15:53