Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Salve non riesco a capire un passaggio in un esercizio di analisi, l'esercizio è il seguente:
Calcolare il limite:
$ lim<br />
x->0[cos(x)^(1/(xsin(x)))] $
questa è forma indertermita 1 all'infinito e fin qui nessun problema, continua:
$ lim<br />
x->0[cos(x)^(1/(xsin(x)))] $ = $ lim x->0[e^((log)^(cos(x)^(1/(xsin(2x)))))] $
qui non ho capito perché scrive e^log(..), mi spiegate da dove salta fuori questo?

Salve matematici. Premetto che la matematica mi piace tantissimo ma purtroppo non sono nato con il dono di un'eccessiva intelligenza, quindi mi affido a voi.
Stavo studiando il teorema di weierstrass e mi è sorto questo dubbio:
1) Funzione continua in un intervallo => Funzione continua in ogni punto dell'intervallo
2) Funzione continua in un punto => limite per x tendente a quel punto è uguale al valore che la funzione assume in quel punto
3) Dal punto 2) si può dedurre che se la funzione è ...

Ciao ragazzi,non riesco proprio a venire alla soluzione di questo esercizio,mi potete dare una mano??
Sia data la forma bilineare fi su $ R^3 $
$ fi ((x,y,z);(x',y',z'))=xx'+xy'-xz'+yx'+2yy'-x'z+3zz' $
1) verificare che sia un prodotto scalare
La matrice associata alla forma bilineare e' $ ( (1,1,-1) , (1,2,0) , (-1,0,3) ) $ che e' simmetrica quindi e' un prodotto interno.Col metodo di Gauss Lagrange viene la matrice diagonale $ ( (1,0,0) , (0,1,0) , (0,0,2) )$ quindi autovalori tutti positivo,allora e un prodotto scalare.
2)Si determini una base di ...
salve ragazzi ho un problema con una serie numerica
$ \sum n^alpha ((1/(n^(1/4))- sin (1/(n^(1/4))))$
per n che va da $1$ a $ \infty$
ora io avevo pensato di dire:
partendo da quello in parentesi so che:
$1/(n^(1/4))$ è decrescente e va da 1 che sarà il massimo a 0, che è invece l'estremo inferiore
$sin (1/(n^(1/4)))$ anche esso è descrescente e varia da 0,8.... a 0
fin qui giusto?
quindi ciò che ho in parentesi è strettamente minore di 1 visto il primo addendo vale 1 solo in n=1 e visto che ...

Salve a tutti! Tra qualche giorno ho il secondo esonero di matematica discreta, incentrato su congruenze lineari, matrici (queste due non sono un problema), e tutta la parte di algebra, vale a dire: gruppi sottogruppi, gruppi ciclici, sottogruppi ciclici, anelli, sottoanelli, grafi ,reticoli , omomorfismi e isomorfismi.
Sono disperatamente alla ricerca di esercizi su questi argomenti in quanto il prof non ha fatto altro che spiegare teoria, ma di esercizi manco l'ombra... Ho visto che in ...
Salve, premetto che ho già letto i vari enunciati e dimostrazioni di tale teorema, ma studiandolo sul mio libro mi è venuto un dubbio...
Chiamando $ m_i$ l'estremo inferiore di f nell'intervallo $ (x_(i-1),x_i)$ e $M_i$ l'estremo superiore di f in$ (x_(i-1),x_i)$ il mio libro dice che $ f(x_(i-1))<= m_i<=M_i<=f(x_i)$
Il mio dubbio sarà stupido ma se $m_i$ è l'estremo inferiore in quell'intervallo come è possibile che $f(x_(i-1))$ sia minore o uguale di quest'ultimo? ...
Buona sera .
Vorrei capire come semplificare questo circuito prima di applicare Kirchhof o qualsiasi altro metodo per lo studio di un transitorio .
Tralascio il circuito a regime per t

Salve sto preparando l'esame di analisi 1, ed ho un problema nel capire un conto fatto in un esercizio:
Consegna Eserczio: n! è un infinito di ordine superiore o inferiore a $ n^n $ ?
La soluzione del''esercizio dice:
consideriamo la successione $ n^n/(n!) $ e calcoliamo il $ lim<br />
n->prop (n^n/(n!)) $
dopo utilizza il criterio del rapporto:
e calcola il limite:
$ lim<br />
n->prop ((an+1)/(an)) $
poi fa i conti:
$ (n+1)^(n+1)/((n+1)!)*((n!)/n)=(n+1)^(n+1)/((n+1)n!)*((n!)/n) $
quello che non ho capito è in questo conto, non capisco da ...
Salve a tutti.
Ho da dimostrare che [tex]S_4\cong \mathbb{F}_2^2 \rtimes_\varphi S_3[/tex]. Spiego prima come l'ho fatto io. La richiesta di aiuto è in fondo.
L'idea che ho avuto io è questa:
Deve accadere che $\varphi: S_3 \rightarrow Aut(\mathbb{F}_2^2)\cong GL_2(\mathbb{F_2})$, sia un omomorfismo. Osservo che:
1) $S_3=<(1\ 2), (1\ 2\ 3)>$;
2) $|Aut(\mathbb{F}_2^2)|=|GL_2(\mathbb{F_2})|=(2^2 - 2^1)(2^2 - 2^0)=4 \cdot 3 = 2^2 \cdot 3$
Dalla 2) so che per Sylow c'è un elemento di ordine 3 ed un elemento di ordine 2 in $Aut(\mathbb{F_2^2})$. Dunque, ci sono effettivamente $\varphi$ omomorfismi non banali.
Con un abuso ...

Ciao ragazzi. Vi espongo questa domanda di teoria di un compito:
Calcolare la risposta di un sistema LTI e BIBO stabile, di risposta impulsiva $ h(t)$, $t in \mathbb{R} $, al segnale in ingresso $ u(t) = A e^{j2 \pi f_0 t}$, $t in \mathbb{R} $ .
L'ho risolto applicando la proprietà di convoluzione sapendo che la risposta (forzata) è $ v_{f} (t) = [h \ast u] = int_{0^-}^{t^+} h( \tau ) u(t - \tau ) d \tau = int_{0^-}^{t^+} h( t - \tau ) u( \tau ) d \tau$. Allora, sostituendo $u(t)$ ho ricavato la seguente espressione e, a seguire, il risultato finale della risposta:
$ v_{f} (t) = A h( t - \tau ) int_{0^-}^{t^+} e^{j2 \pi f_0 (t - \tau)} d \tau = A h( t - \tau ) e^{j2 \pi f_0 t} int_{0^-}^{t^+} e^{-j2 \pi f_0 \tau } d \tau = A h( t - \tau ) e^{j2 \pi f_0 t} [ -{1}/{j2 \pi f_0} e^{-j2 \pi f_0 \tau } ]_{0^-}^{t} = A h( t - \tau ) e^{j2 \pi f_0 t} ( -{1}/{j2 \pi f_0} e^{-j2 \pi f_0 t} + 1/{j2 \pi f_0} ) = A/{j2 \pi f_0} h( t - \tau ) e^{j2 \pi f_0 t} $
Io ho ...

Salve ho preso questo esercizio da un esame passato ma non riesco a capire come risolverlo
Devo trovare le equazioni di una retta r giacente su π a scelta del candidato. il piano in considerazione è $ pi :2x+5y+3z+4=0 $ Grazie per l'aiuto

Salve a tutti, volevo chiedervi una mano con un esercizio di fisica che non capisco come svolgere, poiché mi mancano le formule, dunque vi chiedo anche di indicarmele :)
Il problema è il seguente:
Un fascio di luce di 700 nm di lunghezza d'onda incide su di un forellino circolare di diametro d=0,10 mm. Determina:
a) l'angolo del primo minimo di diffrazione;
b) la distanza fra il massimo centrale (centro della figura)e il primo minimo su di uno schermo distante L=8,00 m.
Grazie in anticipo
Salve, come potrei risolvere un esercizio di questo tipo?
Assegnati i piani
$\pi$[size=50]1[/size]: x +y +z = 1
$\pi$[size=50]2[/size]: αx -3y +2αz = α
$\pi$[size=50]3[/size]: 2x +5y -4z = 2
$\pi$[size=50]4[/size]: -3αy -z = α^2 -2α +5
Discutere la loro posizione reciproca al variare di α
Non importa che mi risolviate l'esercizio con i calcoli, vorrei solo sapere quali le possibili configurazioni che 4 piani possono assumere (in un generico ...

Ciao a tutti,
avrei bisogno di chiarimenti per quanto riguarda l'equivalenza asintotica. Ad esempio nella funzione $ (x+cos(x)-root(3)(x))/(e^(-x)+x^(3/2))$ per x che tende a più infinito come trovo l'equivalenza asintotica? Sempre nella funzione precedente cosa significa che x domina al numeratore e $x^(3/2)$ domina al denominatore?
Grazie in anticipo.

Salve a tutti,
devo svolgere questo esercizio:
Calcolare $(a+b)^31 (mod 31)$. In $(a+b)^31$ , calcolare il coefficiente di $a^2b^29$ e ridurlo mod(2) e mod(3).Per quale p primo tale coefficiente è congruo a 0 mod(p) ?
Scrivo quello che ho fatto(non so se sià giusto o sbagliato):
$1^31 =- 1(mod31), a^31 =- a(mod 31), b^31 =- b(mod31), a^31 + b^31 =- a+b(mod 31) --> (a+b)^31 = a+b(mod 31) $
anche nel caso fosse giusto fin qui comunque non saprei continuare l'esercizio

A quanto ammonta la somma di tutte le cifre di tutti gli interi da $1$ a $1.000.000.000$ ?
Cordialmente, Alex

Ciao,devo risolvere questo esercizio ma non so come formalizzare la matrice di transizione. Vi ringrazio in anticipo.
Nel tennis il vincitore di un game è il primo giocatore a vincere quattro punti, a meno che il punteggio sia 4-3 , nel qual caso il gioco deve continuare finché un giocatore non abbia un distacco di due punti.
Supponiamo che il gioco abbia raggiunto il punto in cui il giocatore che deve servire sia il giocatore A e che stia cercando di ottenere due punti di vantaggio per ...

Come verifico questa identità $arccos(sqrt(13-2x))=π/4+(1/2arcsin(4x-25))$ nell'intervallo $[6,13/2]$ ?
In particolare come verifico questo tipo di identità non risolvibili normalmente ?

Un punto materiale di massa m entra con velocità $v_o$ inclinata di $pi/4$ rispetto alla verticale in un flusso d'acqua profondo $d$ che scorre a velocità $V_v$ orizzontale, supponendo di schematizzare la forza d'attrito viscoso dell'acqua come $F=-gammav_(rel)$, con $v_(rel)$ la velocità relativa del punto rispetto al flusso, calcolare lo spazio percorso orizzontalmente dal punto quando fuoriesce dal flusso.
Il mio dubbio riguarda il ...

Salve a tutti
Il teorema sulla somma di due serie afferma che (riporto solo la parte che mi interessa):
Siano A e B due serie numeriche.
Se la serie A è divergente e la serie B è convergente, allora la serie somma delle due è divergente.
La dimostrazione può essere condotta in modo analogo a quella per la somma dei limiti delle funzioni.
Che mi mette in difficoltà è il fatto che una serie converge e l'altra diverge...
Come posso fare per dimostrare questa parte del teorema?
Grazie e ...