Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Esercizi fisica (261342)
Miglior risposta
Ciao a tutti! Ho bisogno di un aiuto con questi esercizi di fisica che non riesco a svolgere. Qualcuno di voi potrebbe aiutarmi?
Vi allego la foto, grazie!
Ragazzi avrei bisogno di risolvere questo esercizio:
|x - 1| + |x^2 - 1| maggiore/uguale di zero.
Scusate se li scrivo così...
Si tratta della somma di due valori assoluti, so che è per forza maggiore uguale di zero,
ma volevo sapere come si risolve esplicitando i passaggi e creando il sistema di equazioni.
Grazieeeeee
Salve, ho difficoltà nello svolgere la seguente equazione parametrica.
$ sqrt(x^2+m^2)-x=m(2-sqrt(3)) $
Grazie in anticipo per l'aiuto.
Buongiorno,
stavo lavorando ad un vecchio esonero di meccanica quantistica ma ho avuto qualche problema.
Per quanto riguarda il primo esercizio non ho avuto problemi.
Nel secondo esercizio ho avuto difficoltà:
Per quanto riguarda il procedimento generale posso osservare che ad ognuna delle regioni del potenziale posso associare una funzione d'onda particolare, ovvero:
$\psi_1=Ae^(ikx)+Be^(-ikx)$
$\psi_2=Ce^(ik_1x)+De^(-ik_1x)$
$\psi_3=Ee^(2ik_1x)+Fe^(-2ik_1x)$
$\psi_4=Ge^(ikx)$
Da queste si vede che
\( ...
Buonasera, sto facendo un esercizio in cui viene chiesto di trovare l'immagine di una funzione su un insieme, in questo caso sull'ellisse data.
Vorrei sapere cosa ne pensate del mio metodo di risoluzione.
Data la funzione $f(x,y) = sqrt(6)/2 * xy - y^2$, calcolare la sua immagine in $D {(x,y): x^2 /4 + y^2 / 6 =1}$
In questo caso la cosa più intelligente da fare sarebbe effettuare una parametrizzazione della funzione passando alle coordinate ellittiche. Tuttavia, dato che l'ho appena studiato, ho voluto utilizzare il ...
Testo: Una particella relativistica di velocità $v$ collide con un'altra particella identica a riposo formando un unico sistema che si muove a velocità $v'$. Calcolare $v'$ in funzione di $v$.
Il libro dice che per risolvere questo problema devo mettere a sistema queste due equazioni:
$ \gamma (v) mv^2= \gamma (v') M v'^2$
$ \gamma mc^2+mc^2=\gamma (v')M c^2$
Penso stia usando la conservazione della quantità di moto e dell'energia cinetica. La prima equazione l'ho capita, ma ...
Ciao!
Non riesco a capire se nel seguente esercizio sbaglio io l’impostazione oppure sia sbagliato qualche dato
Una massa m=1.02 kg, rappresentata nella figura a destra, viene lanciata verso l’alto con una velocità v0=1 m/s da un’altezza h=0.5 m. Arrivata al suolo, la massa impatta su una molla di costante elastica k=50 N/m. Dopo l’impatto, la compressione massima della molla è pari a 20 cm. Calcolare il lavoro compiuto dalle forze di attrito fra la massa e l’aria.
Figura in ...
Salve a tutti, premetto che ho cercato nel forum ma non ho trovato esercizi che potessero darmi una risposta quindi vi chiedo:
Come rispondereste a questo esercizio?
Una palla viene gettata verso il basso dal bordo di una rupe con una velocità iniziale pari a tre volte la velocità terminale. Inizialmente la sua accelerazione è:
(a) verso l’alto e inferiore a g
(b) verso il basso e inferiore a g
(c) verso il basso e uguale a g
(d) verso il basso e maggiore di g
(e) verso l’alto e superiore a ...
Buongiorno a tutti, mi sono imbattuto in questo esercizio che ho risolto in due metodi differenti, il problema è che vengono due soluzioni diverse...
$cosx+cos(\frac(x)(2))+1=0$
Metodo 1: introduco una variabile $t=\frac(x)(2)$ e l’equazione diventa
$cos2t+cost+1=0$
$2cos^2t+cost=0$
$cost(2cost+1)=0$
Da cui
$cost=0\rightarrow t=\frac(\pi)(2)+k\pi \rightarrow x=\pi+2k\pi$
$cost=-\frac(1)(2) \rightarrow t=\frac(2)(3)\pi+2k\pi \vee t=\frac(4)(3)\pi+2k\pi \rightarrow x=\frac(4)(3)\pi+4k\pi \vee x=\frac(8)(3)\pi+4k\pi$
Che sono le soluzioni del libro.
Poi ho provato con la formula di bisezione per il coseno:
$cosx\pm\sqrt(\frac(1+cosx)(2))+1=0$
$\frac(1+cosx)(2)=cos^2x+2cosx+1$
$2cos^2x+3cosx+1=0$
Le cui ...
Qual è la Differenza tra campo elettrico e forza elettrica?
Ciao, penso abbiate tutti presente questa definizione di convergenza in misura, quella "ufficiale" diciamo.
Solo che sul Rudin "Analisi Reale e Complessa", ho trovato una definizione un po' diversa: con gli stessi significati della notazione del link, $f_n$ converge a $f$ in misura se $AA\epsilon>0, \mu({x\inX||f(x)-f_n(x)|>\epsilon})<\epsilon$, definitivamente .
Mi chiedevo se fossero equivalenti o meno, ovviamente quella ufficiale implica quella del Rudin ma il viceversa non mi è chiaro se è vero, ...
Ho necessità di alimentare un singolo giochino che spruzza acqua, ma la pressione di casa mia è bassa.
Se collego 2 pompe per irrigazione (da 2 appartamenti diversi ma dello stesso palazzo) tramite uno sdoppiatore a Y, in uscita avrò una pressione più forte?
grazie
Studiando le funzioni armoniche e simili e mi sono chiesto se fosse vero che una funzione è subarmonica se e solo se è minore (o uguale) in ogni punto alla media fatta in una qualsiasi palla (PIENA!) centrata in quel punto con chiusura inclusa nell'aperto.
Questo perché è noto che una funzione è armonica ($\Deltau=0$) $<=>$ vale la proprietà della media sulle palle $<=>$ vale la proprietà della media sulle sfere. Inoltre una funzione è subarmonica ...
Ciao a tutti! E' corretto dire che poichè il lavoro della forza di attrito statico è nullo (essendo in assenza di spostamento) allora non vi è energia dissipata? Così dovrebbe essere in teoria, ma pensando a casi reali (probabilmente sono esempi stupidi ma non mi tornano) mi è venuto il dubbio. Stavo pensando ad esempio ad una persona che spinge un oggetto molto pesante e che magari pur non riuscendo a muoverlo " fa fatica" oppure analogamente ad un motore che tenta di movimentare un carico ...
Ciao, sapreste dirmi se è corretto il seguente enunciato preso dal libro di Marcellini-Sbordone?
Per ogni numero reale \(x\geq-1\) e per ogni naturale n, risulta
\[
(1+x)^n\geq 1+nx
\]
Sulla Wikipedia invece le condizioni sono \(x>-1\) e \(n\geq 0\); in effetti stando al Marcellini se prendessi \(x=-1\) e \(n=0\) ottengo una diseguaglianza impossibile. È un errore di tipografia?
Ho letto questa discussione
https://www.matematicamente.it/forum/vi ... 7&start=10
l'ultimo messaggio spiega benissimo l'induzione per dimostrare ...
Aiuto relatività per maturità
Miglior risposta
Qualcuno mi può spiegare (senza la dimostrazione che ho sul mio testo) bene la "dilazione dei tempi" in relatività e cosa comporta questa legge per un osservatore solidale e uno in moto rispetto a quello solidale?
Grazie
Aggiunto 1 giorno più tardi:
Nessuno può aiutarmi?
Salve, un esercizio di fisica sulla dinamica dei fluidi dice: "Nello scafo di una nave si è aperta una falla circolare di area 9,2 cm2 a 3,8 m sotto il pelo dell'acqua (d=1024 kg/m3)" chiede con quale pressione l'acqua entra nella carena. L'esercizio esce però se non considero la pressione atmosferica e uso soltanto p=dgh. Allora mi chiedo, come faccio a capire quando devo tenere in considerazione la pressione atmosferica? Grazie
Salve ! Ho un dubbio relativo alla differenza “pratica” tra la definizione di rapporto di trasmissione e rendimento.
Il rapporto di trasmissione regola il rapporto tra le velocità angolari di un movente e di un cedente. Questo incide sulla
Coppia trasmessa da ciascuno di questi organi (il momento è dato, ad esempio, da potenza su velocità angolare e quindi se questa diminuisce rispetto a quella del movente —con un rapporto di trasmissione minore di 1— la coppia del cedente sarà maggiore di ...
Ciao a tutti!
scrivo perché ho un problema nello studio di funzione. Studio da sola quindi vi chiedo un po' di pazienza.
Allora, la funzione è:
$y= (2x+2)/(3-x)$
Determinare:
1-dominio
2-intersezioni con gli assi cartesiani
3-la discontinuità
4-gli asintoti
5-tracciare il grafico
Allora, per il punto 1 ho posto il denominatore diverso da zero quindi $x != 3$ è il dominio.
2) ho impostato il sistema di equazioni tra numeratore e denominatore quindi $2x+2=0$ e ...
Ciao Ragazzi ho il seguente problema :
Sia $ Sigma $ la superficie generata dalla rotazione di un angolo giro intorno all'asse z della curva nel piano (x,z) di equazione $ x=z^4 $ con $ zin R $.
Sia S la parte di $ Sigma $ compresa tra i piani $ z= 1 $ e $ z= 2 $ formata dai punti di ordinata positiva.
Orientata S in modo che il versore normale positivo nel punto (0,1,1) formi con il vettore $ -j+2k $ l'angolo ...