Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Salve a tutti,
ho questo limite:
$\lim_{n \to \0+}(1/(e^x-1)-1/sin x)$
Non posso usare le equivalenze asintotiche perchè risulterebbe:
$1/(e^x-1) ~= 1/x$
$1/sinx ~= 1/x$
$1/(e^x-1) - 1/sinx ~= 1/x - 1/x = 0$ e non posso quindi usare le equivalenze asintotiche per questa somma.
Come posso procedere allora?
Grazie in anticipo
Ciao a tutti, sto studiando il teorema di Morita sull'equivalenza di categorie di moduli. Devo dimostrare il seguente fatto, ma ho trovato delle difficoltà.
Siano $R$ and $S$ anelli equivalenti con equivalenze inverse $F: _{R}M \to _{S}M$ e $G: _{S}M \to _{R}M$. Siano $P=F(R)$, $Q=G(S)$.
Allora $P$ è (S,R) bimodulo e $Q$ è (R,S) bimodulo.
Nella dimostrazione l'autore richiama questi 2 isomorfismi di anelli:
...
Buongiorno, ho un dubbio riguardo le permutazioni che fissano un dato numero di elementi.
Cerco di spiegarmi:
se considero il gruppo simmetrico $S_5$, il sottogruppo $tau$ formato dalle permutazioni che fissano un elemento avró
$|tau | =(n-1)!$, quindi questo sottogruppo é isomorfo a $S_4$
Guardando invece in $S_5$ le permutazioni che fissano un elemento, ho visto che quelle della forma $2+2+1 =15$ e quelle
della forma $4+1 =30$. ...
Ciao a tutti, sto svolgendo un progetto per l'esame di Algoritmi e Strutture dati e ho un piccolo problemino a capire una formula che è scritta all'interno del testo dell'esercizio.
Data $\alpha$ stringa casuale e $\alpha in \epsilon$* con $\epsilon = {a,b,c,...,z}$ il mio dilemma è comprendere le seguenti notazioni:
$min_(s in \epsilon) |{i | \alpha <em> = s}|$
$max_(s in \epsilon) |{i | \alpha <em> = s}|$
Vi allego il link al testo completo del progetto se dovesse servire https://mega.nz/#!K2wRXJ5T!jji0EUMRX1bjE8n0lEw2e-h4r27Ey0YvhnwmFPdfgSM
Vi ringrazio in anticipo,
Matteo.
Ciao, come vanno i seguenti esercizi secondo voi?
i) Mostrare che \(\displaystyle A\subset B \) implica \(\displaystyle \text{diam}A\le\text{diam}B \).
Per assurdo, sia \(\displaystyle \text{diam}A>\text{diam}B \). Dalla definizione di diametro, ciò significa che posso trovare una coppia \(\displaystyle (x,y)\in A \) tale che \(\displaystyle \mathrm{d}(x,y)>\mathrm{d}(x',y') \) per ogni scelta di coppie \(\displaystyle (x',y')\in B \), contraddicendo l'ipotesi \(\displaystyle A\subset B \) ...
Ciao,
dalle notazioni il tuo testo mi sembra proprio il Quarteroni.
Per quanto riguarda la prima proprietà ovviamente quello che si deve fare l'hai intuito: derivare la funzione d'energia $\Phi(\mathbf{x})=1/2\mathbf{x}^T\mathbf{Ax}-\mathbf{x}^T\mathbf{b}$.
Tuttavia, per calcolare il valore ottimale di $\alpha_k$ si scrive $\mathbf{x}_{k+1}=\mathbf{x}_{k} + \alpha \mathbf{r}_{k}$, da cui $\Phi(\mathbf{x}_{k+1})=\frac{1}{2} (\mathbf{x}_{k} + \alpha \mathbf{r}_{k})^T A (\mathbf{x}_{k} + \alpha \mathbf{r}_{k} ) - (\mathbf{x}_{k} + \alpha \mathbf{r}_{k})^{T} \mathbf{b}$ e questo ultime termine è uguale a
$=\frac{1}{2}(\mathbf{r}_{k}^{T} A \mathbf{r}_k)\alpha_{k}^{2} - \mathbf{r}_{k}^{T}(\mathbf{b}-A\mathbf{x}_{k})\alpha_k + \frac{1}{2} \mathbf{x}_{k}^{T} A \mathbf{x}_{k} - \mathbf{x}_{k}^{T} \mathbf{b}$
Derivando rispetto al $\alpha$ e imponendo l'annullamento della derivata $\frac{d \Phi(\alpha_k)}{d \alpha_k}=(\mathbf{r}_k^{T} A \mathbf{r}_k) \alpha_k - \mathbf{r}_k^{T} \mathbf{r}_k=0$
da cui la ...
Ciao a tutti ho da poco iniziato a studiare 'elettrotecnica e mi è capitato un esercizio che non mi è molto chiaro:
l'esercizio è questo:
Usando la sovrapposizione degli effetti spengo per primo il generatore di tensione E2
ottengo quindi:
Ora il libro mi da questa soluzione ma non capisco come ci si arrivi:
Qualcuno sarebbe in grado di aiutarmi?
grazie
Se \(\displaystyle (X,\mathrm{d}) \) è uno spazio metrico, allora un'altra metrica è definita da \(\displaystyle \mathrm{d}'(x,y)=\frac{\mathrm{d}(x,y)}{1+\mathrm{d}(x,y)} \) e \(\displaystyle (X,\mathrm{d}') \) è limitato.
Allora, chiaramente le prime proprietà della metrica \(\displaystyle d' \) discendono immediatamente da quelle di $d$; \(\displaystyle d' \) è certamente non negativa, nulla solo se \(\displaystyle x=y \) e simmetrica. Resta quindi soltanto la disuguaglianza ...
Ciao a tutti, quando si parla di intorni sferici in \(\displaystyle \mathbb{R} \) o in \(\displaystyle \mathbb{C} \) non ci sono grossi problemi. Tuttavia trovo più difficile visualizzare cosa significano in altri spazi metrici. Ad esempio, prendendo lo spazio di funzioni \(\displaystyle C[-1,1] \), \(\displaystyle B(x_0,1) \) è l'intorno sferico di raggio $1$ centrato in una funzione \(\displaystyle x_0(t) \). Quindi se per esempio prendo \(\displaystyle x_0=t^2 \) cosa devo ...
Recentemente mi sono interessato un po' alle algebre di Boole (BA) e mi è sorta qualche domanda su esse (e su argomenti correlati), ma essendo tante non mi sembra una buona idea né metterle tutte in post diverse, né tutte nello stesso così vi chiedo delle referenze per le varie domanda che mi interessano (chiaramente se mi rispondete direttamente lo apprezzo maggiormente).
1) Come si fa a dimostrare che una BA completa e atomica è isomorfa a $P(X)EEX$?
2) Come si dimostra che una BA ...
Ciao a tutti, in un problema mi è richiesto di calcolare l'integrale della radice di x tra 0 e 1 con il metodo del trapezio e di Simpson. Dalla teoria si sa che l'errore dei due metodi va con $n^-2$ per il trapezio e con $n^-4$ per simpson, ma andando a calcolare la legge di potenza in questo caso viene che l'errore va con $n^-(3/2)$. Come si spiega? Come può essere coerente con la teoria? (n è il numero dei sottointervalli)
Grazie in anticipo
In un generico moto circolare, per spostamenti infinitesimi, vale la seguente uguaglianza:
$ d\vec{r} = \vec{d\varphi} \wedge \vec{r}$, con $d\vec{r}$ che indica il vettore spostamento infinitesimo di un generico punto del sistema, $\vec{d\varphi}$ il vettore relativo alla rotazione infinitesima attorno ad un asse del sistema e $\vec{r}$ il vettore che congiunge la posizione del punto del sistema in movimento con un generico punto dell'asse di rotazione.
La mia domanda è: quali sono i passaggi ...
Ciao a tutti. Nello spazio $s$ delle successioni complesse (convergenti o meno) si definisce la metrica \[\displaystyle \mathrm{d}(x,y)=\sum_j^{\infty} \frac{1}{2^j}\frac{|\xi_j-\eta_j|}{1+|\xi_j-\eta_j|}. \] La dimostrazione della disuguaglianza triangolare funziona indipendentemente dal termine \(\displaystyle 1/2^j \), per cui mi chiedo: è vero che ad esso può essere scelto qualunque altro termine, a patto che la serie risulti convergente?
Salve, ho un dubbio riguardante il primo problema presentato all'esame di ammissione alla Sant'Anna nel 2016.
Testo: https://www.santannapisa.it/sites/defau ... 162017.pdf
L'angolo di inclinazione richiesto corrisponde all'angolo tale che la forza di attrito statico è uguale alla forza peso parallela al piano?
Buonasera! Mi scuso per l'ora ma ho difficoltà a risolvere il seguente esercizio: una cassa di massa $m=12kg $ è posta su un piano inclinato scabro con velocità iniziale, lungo il piano inclinato e diretta verso l'alto, $ v=3m/s $. Sulla cassa è inoltre applicata una forza diretta verso destra $ F=100 N $. Sapendo che il coefficiente di attrito dinamico è $k=0,35 $ e che l'angolo del piano inclinato misura $ b=30° $ calcolare: a) il modulo dell'accelerazione ...
Ciao
Ultimamente mi è caduto sott'occhio un fatto che può sembrare inutile, ma è interessante per me. Il punto in questione è questo:
"Tom Leister qui a pagina 1":37rlba5m:
Example 0.1 Let us denote with $1$ a set with one element. (It does not matter what this element is called.) Then $1$ has the following property:
for all sets $X$, there exists a unique map from $X$ to $1$.
Se \(X \ne ...
Buongiorno a tutti! Sono un paio di giorni che sto cercando di risolvere il seguente integrale:
$ \int_{-\infty}^{+\infty}\frac{cos(x)}{cosh(x)} $
Ho provato ad integralo nel campo complesso ed ad utilizzare i residui, ma non riesco comunque a venirne a capo. Qualcuno mi potrebbe aiutare? Grazie in anticipo a tutti coloro che mi risponderanno
Salve a tutti,
scusate se sembra un po' stupido, ma qualcuno mi può aiutare a svolgere questo esercizio:
Se esiste il massimo di $ f(x) = x - x^2 $ sull'insieme $ A = {A ∈ ]0,2π[: cos(x)<=0} $ quanto vale?
Non riesco a capire come risolverlo sull'insieme. Grazie in anticipo.
Ciao a tutti, ho fatto questi 4 esercizi che mi chiedono di verificare se le funzioni soddisfino o meno il T.di Lagrange, nonchè di determinare il punto X0... non ho modo di sapere se ho svolto correttamente... potreste aiutarmi? Grazie
1) $y=x^3+2x-3$ $[-1,3]$
dominio R continua. derivabile in (a,b)
derivata $ (3x^2+2)$
$ (3x^2+2)= 18/2$
$ x = sqrt(16/3)$
2) $y=x^3-x^2+2$ $[-1,2]$
dominio R continua. derivabile in (a,b)
derivata ...
Buongiorno, ho da svolgere il seguente esercizio, ma non riesco a capire come procedere in alcuni punti:
Un utente con uno slittino, per un totale di 80.0 kg, si lanciò dal punto più alto (punto A) con una velocità di 2.50 m/s. La discesa, lunga 54.3m, era alta 9.76m alla cima. Lungo la canelletta 725 rotelle rendevano trascurabile l'attrito. Una volta usciti in orizzontale dalla canaletta nel punto più basso (punto C), si riusciva a pattinare sull'acqua per una distanza di 50.0 m prima di ...