Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Buonasera a tutti,
sto leggendo il testo 'analisi tre' di Gianni Gilardi e, a pagina 349, viene proposto il seguente fatto:
Se $u_k\to u$ nel senso delle distribuzioni e se $v\in \mathcal{D}$, allora:
$$\lim_{k\to\infty}\int u_k(y)v(x-y)\mathrm{d}y = \int u(y)v(x-y)\mathrm{d}y$$
uniformemente su ogni compatto di $\mathbb{R}^n$. Inoltre, la stessa conclusione vale se $u_k\to u$ nel senso delle distribuzioni a supporto compatto e ...
Salve, mi sono imbattuto in questo esercizio:
Un tronco cono di altezza $h$, raggio di base inferiore $R_1$, raggio di base superiore $R_2$ e densitá $\rho$ aderisce perfettamente al fondo di un recipiente. Il recipiente é riempito fino al livello $L > h$ di un liquido di densitá $\rho_L>\rho$. Determinare sotto quali condizioni il cono rimane sul fondo.
Premetto che la soluzione è disponibile dalla fonte da ...
Sia $S$ l’insieme dei punti $(x,y,z)inRR^3$ che soddisfano l’equazione $x^3+y^2+z^2=1$. Calcolare le curvature principali e la curvatura gaussiana nei punti $p_1=(1,0,0)$, $p_2=(0,1,0)$ e $p_3=(0,0,1)$.
Non so bene come fare dato che sono abituato a trovare queste due cose tramite parametrizzazioni dato che basta studiare le rispettive derivate parziali di una tale parametrizzazione... Sicuramente una volta trovate le curvature principali basta moltiplicarle per ...
Due piani paralleli infiniti distanti tra loro $ d=10 cm $ sono caricati con densità di carica uniforme positiva rispettivamente pari a $ sigma_1=40 (nC)/m^2 $ e $ sigma_2=80 (nC)/m^2 $ .
Un filo isolante infinito perpendicolare alla sezione in figura e carico con densità di carica lineare $ lambda=-200 (pC)/m $ è posto al centro dei piani. Considerando il punto A posto su una circonferenza di raggio $ R=3cm $
centrata sul filo determinare modulo, direzione e verso del campo elettrostatico ...
Una sfera conduttrice C1 di raggio R1=10 cm è circondata da un dielettrico omogeneo sferico di spessore d=4cm e costante dielettrica relativa k=5. Il sistema è racchiuso da un guscio conduttore sferico C2 di raggio R2=12 cm.
Determinare la differenza di potenziale elettrostatico tra i due conduttori.
Posso risolvere l'esercizio calcolando il potenziale elettrico della sfera più grande avente raggio R2+R1 utilizzando la formula : ΔV= - ʃE dl dove E è il campo elettrico ...
Un'onda elettromagnetica piana progressiva di frequenza $ nu =40MHz $ si propaga nel vuoto nella direzione z. Sapendo che il campo elettrico oscilla nella direzione dell'asse y con ampiezza massima di oscillazione $ E_0=50 V/m $ , determinare l'espressione dei campi elettrici e magnetici dell'onda.
Poiché il campo magnetico deve essere perpendicolare sia a $ vecB $ sia a $ vecS $ evidentemente dovrà essere diretto lungo l'asse x
Salve a tutti, sto cercando di risolvere questo esercizio:
Problema 1
Una massa puntiforme m=1 kg si muove su un piano orizzontale scabro, con coefficiente
di attrito dinamico μd=0.5 (vedi figura). All’istante t=0 transita per il punto A con
velocita vA e, dopo aver percorso un tratto di lunghezza d=2 m, va a comprimere una
molla ideale, di costante elastica K=10 N/m, inizialmente a riposo, disposta come in
figura.
1) Si determini il valore di vA tale che la massa arrivi a toccare la molla in ...
Salve sono nuovo in questo forum, volevo chiedere una mano avendo qualche difficolta nel seguente esercizio
Data la conica C: x^2+y^2-4x+6y=0 scrivere l'equazione della tangente a C nel suo punto di massima distanza dall'origine. ho trovato la circ = (-1,-2) e il raggio che è uguale a radice di 5, tramite la formula x-0/2=-1 e
y-0/2=-2 ho trovato p (-2,-4), sinceramente non so come continuare per trovare l'eq, il mio professore ha scritto solo i risultati senza passaggi trovando 0C -x=-4/2 ...
Salve a tutti, sto cercando di risolvere il seguente esercizio:
Problema 1
Due masse puntiformi, m1=8.0 kg e m2=6.0 kg, sono tra loro collegate da un filo ide-
ale alla massa m e sono appoggiate su di un piano orizzontale scabro (v. figura). I
coefficienti di attrito dinamico sono μ1 = 0.5 e μ2 = 0.3 per la prima e seconda massa
rispettivamente.
1) Determinare il valore di m affinch ́e il sistema si muova di moto uniforme; [m=5.8 kg]
2) in condizioni di moto uniforme si calcoli il valore ...
Come da titolo, devo calcolare la derivata prima di questa funzione. $ f(x) $ posso riscriverla come
\[
f(x) =
\begin{cases}
x & \text{se } x > 0 \\
\sin x & \text{se } x \leq 0
\end{cases}
\]
La derivata prima è la stessa funzione condizionale con però le funzioni al suo interno derivate?
Ciao, ho il seguente esercizio:
Due amici A e B si sfidano a dama facendo un gran numero di
partite. Supponiamo che i risultati delle partite siano indipendenti e che A
vinca B in una singola partita con probabilità 1/2, pareggi con probabilità
1/10 e perda con probabilità 4/10. Si indichi con N il numero di partite
giocate affinché ci sia la prima partita pareggiata.
a) Qual è la distribuzione di N?
b) Sapendo che N = 2, qual è la probabilità che la prima partita sia stata
vinta da A?
c) ...
Qui non saprei onestamente dove partire
Uno ione di massa pari a m=3.8 * 10^-26 kg e carica elettrica Q=1.6*10^-19 C dopo essere stato accelerato (partendo da fermo) da una differenza di potenziale V=23 V entra in una regione in cui è presente un campo magnetico uniforme perpendicolare alla direzione di moto dello ione. Spendo che lo ione nel campo magnetico percorre una circonferenza di raggio r=14 cm determinare l'intensità del campo magnetico presente
Buongiorno, avrei bisogno di aiuto con questo esercizio numerico di meccanica orbitale:
Un satellite si trova su un’orbita iperbolica con eccesso iperbolico di velocità pari a 3 km/s.
Valutare la manovra ottimale per immettere il satellite in un’orbita ellittica con raggio di
pericentro 7000 km ed eccentricità 0.1. Rappresentare un grafico della traiettoria indicando,
modulo, direzione e punto di applicazione per ciascun impulso di velocità (se più di uno).
Valutare il ∆V totale di missione. ...
Buongiorno a tutti ragazzi e felice anno nuovo !
Come si vede dal testo dell'esercizio in allegato, la domanda riguarda la circuitazione del campo magnetico lungo un percorso chiuso triangolare.
Il modo in cui risolverei è sfruttare la legge di ampere e scrivere la circuitazione di B come μI dove però I= ∫∫J °dS
Quindi avrei 15 * (b*h/2) ?
Salve a tutti, sto sbattendo la testa sul seguente esercizio di fisica:
Una massa puntiforme m=5 kg, partendo da ferma nel punto A, viene lasciata scivolare
da un’altezza h=1 m lungo un piano inclinato scabro con angolo di base θ = 30◦
e coefficiente di attrito dinamico μ=0.4. Alla fine del piano inclinato (punto B) la
massa percorre un tratto di lunghezza d=0.5 m su un piano orizzontale scabro (stesso
coefficiente di attrito) sino al punto C dove viene (istantaneamente) fermata da una
molla ...
Ciao e buon anno a tutti. Come da titolo, mi sono imbattuto in questo quesito, che costituisce la seconda parte di un esercizio.
La prima parte consisteva nel calcolo di
\[ \int_{1}^{2} \frac{e^{3x}}{e^{6x}-1}\,dx\]
che è uguale a
\[ - \frac{1}{6} \log \left( e^6 + 1\right) + \frac{1}{6} \log \left( e^3 + 1\right) + \frac{1}{6} \log \left( e^6 - 1\right) - \frac{1}{6} \log \left( e^3 - 1\right) \].
Ora, per la risoluzione di integrali impropri di quel tipo, teoricamente è necessario ...
non ho capito questo: in un serbatoio di acqua, se faccio entrare altra acqua aumentando la pressione da 1bar a 10bar, aumento la quantita' di acqua, quale formula devo usare per calcolare l'aumento di acqua contenuta?
grazie
Ciao, qualcuno potrebbe aiutarmi a capire come impostare la risoluzione di questo integrale doppio? Grazie in anticipo.
$ int int_(D) (1/sqrt(x^2+y^2)) dx dy $ dove
$ D = {(x,y)in R^2, x>=0, y<=0, x^2+y^2>=1/2, x<= 1+y } $
Ho provato con la sostituzione in coordinate polari ma non ho concluso nulla, il dominio la regione compresa tra l'arco di circonferenza e la retta $ 1+y $.
Ciao a tutti. Sto cercando di risolvere il seguente problema di Cauchy:
\begin{cases}
y^\prime = 3y - 1 \\
y(0) = 0
\end{cases}.
Risolvendo l'equazione differenziale, ottengo $ y(t) = \frac{e^{3t+c} + 1}{3} $. Provando ad imporre la condizione iniziale $ y(0) = 0 $, ottengo però $ y(0) = \frac{e^c+1}{3} $ e da qui non so come trovare la $ c $ per la soluzione esatta. Ho chiesto ad un mio compagno e mi ha detto di procedere in questo modo:
$ e ^ {3t + c} $ diventa $ c \cdot e^{3t} $, pertanto: ...