Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
$ arctan(x^2) $Ciao,
non riesco a capire come trovare lo sviluppo di Taylor (con $ x_0=0 $ ) della funzione $ 1/arctan(x^2) $
Ho già provato a calcolare quello di $ arctan(x^2) $ che mi esce $ x^2-x^6/3 $ ma facendo poi il tutto alla -1 diventa $ 3/(3x^2-x^6) $ e sono punto a capo.
Come posso fare?
Grazie

Buonasera a tutti
Link per visionare il transitorio: https://www.canva.com/design/DAFnrrkI2E ... hsharelink
$iL(0^-)=-2.5A$ | $iL(0^+)=-2.5A | iL(+infty)=??$
$vL(0^-)=0 V | vL(0^+)=? | vL(+infty)=0 V$
e fino a qua ci sono...
ho dei dubbi sul calcolo di $iL(+infty)$ e di $vL(0^+)=?$
grazie a chi mi risponderà!!

Due sbarrette di lunghezza L hanno ciascuna una carica q distribuita uniformemente.sulla loro lunghezza. Esse sono sull'asse x e la distanza dei loro centri vale d. Calcolare la forza tra le due bacchette.
Potrei trovarmi il campo elettrostatico generato dalla prima sbarretta in un punto generico sull'asse a distanza x dall'origine che coincide con l'estremo della prima sbarretta. Moltiplicando quest'ultimo per la carica infinitesima della seconda sbarretta avrei la forza con cui ...
Se $VsubRR$ è l’insieme di Vitali, allora $Vxx{0}$ è $L^2$-misurabile e ha misura nulla.
Consideriamo il ricoprimento lebesguiano di $V$ dato da $[-n,n]xx{0}$, abbiamo che $L^2([-n,n]xx{0})=0$, per cui per abbiamo trovato un ricoprimento tale che$AAepsilon>0$ si ha $\sum_{n=0}^{+infty}mu^{star}([-n,n]xx{0})=0<epsilon$, per cui $L^2(Vxx{0})=0$. Va bene?

Un tubo di gomma per innaffiare il giardino spruzza acqua in direzione orizzontale con una forza di 30 N. Il getto d'acqua arriva al suolo con un'inclinazione di 45°. Calcola la pressione che l'acqua esercita su una porzione circolare di suono di diametro 24 mm.
Per il resto posso proseguire da sola ma potreste dirmi come si arrivare a svolgere il calcolo Fy = 30 * sin(45°)? Nonostante i miei tentativi non arrivo mai ad ottenere un valore di ipotenusa di 30 N
Ciao,
come si a trovare lo sviluppo di taylor di questa funzione con $ x -> ∞ $ ?
$ (4pi^2x^4)/(2pi^2x^2+1) $
Il primo termine l'ho calcolato perché il denominatore è asintotico allo stesso senza il +1, ma fermandomi qui nella funzione dell'esercizio (questa che vi ho postato è solo una parte), mi si "elimina" questo primo termine dello sviluppo ( $ 2x^2 $ ).
Da wolframalpha ho visto che il secondo termine sarebbe $ -1/pi^2 $ , ma non capisco come trovarlo.
Grazie

Buongiorno, volevo chiedervi se la seguente idea, risulta essere fattibile.
Sia $f: (a,b) to RR$ funzione monotona crescente, una tale funzione può avere al più punti di discontinuità di prima specie, escludendo gli estremi. Vorrei provare che la somma dei salti non può superare $f(b)-f(a)$.
Ora ho questo l'ho provato in maniera diretta, cioè facendo cosi, suppongo che $x_0< x_1$ siano punti di discontinuità, allora devo verifcare che $s(x_0)+s(x_1) le f(b)-f(a)$, dove ...
Se $f_n:A->[-infty,+infty]$ sono misurabili e vale $\sum_{n=1}^{+infty}\int_Aabs(f_n(x))d\mu$, allora $\int_A\sum_{n=1}^{+infty}f_n(x)d\mu=\sum_{n=1}^{+infty}\int_Af_n(x)d\mu$.
Io ho fatto così (se è sbagliato ditemi):
Se mostriamo che la successione di funzioni $s_k(x)=\sum_{n=1}^{k}f_n(x)$ verifica le ipotesi del teorema di convergenza dominata di Lebesgue allora vale che $\sum_{n=1}^{+infty}\int_Af_n(x)d\mu=lim_(k->+infty)\sum_{n=1}^{k}\int_Af_n(x)d\mu=lim_(k->+infty)\int_A\sum_{n=1}^{k}f_n(x)d\mu=\int_Alim_(k->+infty)\sum_{n=1}^{k}f_n(x)d\mu=\int_A\sum_{n=1}^{+infty}f_n(x)d\mu$.
Osserviamo che le $s_k(x)$ sono misurabili su $A$ poichè somma di funzioni misurabili su $A$.
Abbiamo che $abs(s_(k)(x))<=\sum_{n=1}^{k}abs(f_n(x))$, abbiamo che $\sum_{n=1}^{k}abs(f_n(x))$ è una ...
Sia $f:RR^(n+m):->[-infty,+infty]$ una funzione sommabile, definiamo $f_+=max{f,0}$ e $f_(-)=max{0,-f}$. Abbiamo che $f_+,f_->=0$ e sono misurabili (può andar bene dire che lo sono poichè sia $f$ che $abs(f)$ sono misurabili poiche $f$ è sommabile?), allora possiamo applicare il teorema di riduzione di tonelli su $f_+$ e $f_-$ e si ha $\int_{RR^(n+m)}f_+dxdy=\int_{RR^n}(\int_{RR^m}f_+dy)dx$ e $\int_{RR^(n+m)}f_(-)dxdy=\int_{RR^n}(\int_{RR^m}f_(-) dy)dx$ (con la notazione che $dL^n=dx$ e $dL^m=dy$). ...
Si ha che $f:[a, b]->RR^n$ è $BV[a,b]$ (ovvero a variazione limitata) se e solo se lo sono tutte le sue funzioni componenti.
Posto $f(x)=(f_1(x),...,f_n(x))$ ricordiamo le relazioni $max{||f_1(x)||_{RR^n},...,||f_n(x)||_{RR^n}}<=||f(x)||_{RR^n}<=||f_1(x)||_{RR^n}+...+||f_n(x)||_{RR^n}$ per ogni $x in[a,b]$.
Supponiamo che $f$ sia a variazione limitata, sia $\sigma={a=x_0<x_1,...,x_(p-1)<x_p=b}in\Omega[a,b]$ una scomposizione di $[a,b]$. Allora $AAiin{0,...,n}$ si ha $v(f_i,\sigma)=\sum_{k=1}^p||f_i(x_k)-f_i(x_(k-1))||_{RR^n}<=\sum_{k=1}^p||f(x_k)-f(x_(k-1))||_{RR^n}=v(f,\sigma)<+infty$ (poichè $f$ è a variazione limitata), ma allora $AA\sigmain\Omega[a,b]$ e ...

Salve,
vago cercando una risposta a una domanda sorta leggendo il mio testo.
Un sottospazio vettoriale W viene definito come spazio vettoriale di V se W è spazio vettoriale sul campo medesimo di V e con le medesime operazioni di V.
(in pratica devono valere le 8 proprietà sulle due operazioni definenti lo spazio vettoriale)
C'è poi un teorema di caratterizzazione che dice se W è sottoinsieme di V e valgono:
a) per ogni $v,w in W$ => $v+w in W$
b) per ogni $lambda in K$ e ...

Ho un disco di raggio $R$, massa $M$ che ruota con velocità angolare $\omega_0$ attorno a un asse orizzontale passante per il suo centro di massa. A un certo istante il disco viene lasciato cadere. Dopo avere percorso una distanza (verticale) $h$ viene agganciato da un piolo distante $R$ dal centro di massa e comincia a ruotare attorno a esso.
Devo calcolare la velocità angolare del disco dopo l'urto, l'impulso che il piolo ha ...

Ciao a tutti, ho un dubbio riguardo questo esercizio:
data la 1-forma differenziale $\omega = (-y^2)/((x-y)^2) \ dx + (2xy-y^2) / ( (x-y)^2) \ dy $
Dire se è vero che esiste un potenziale $U(x,y)$ definito su tutto $\RR^2 - {x \ne y} $, tale per cui $U(3,4)=U(4,3)$.
Anzitutto si ha che la forma è di classe $C^1$ ed è chiusa in $\RR^2 - {x \ne y}$. Tuttavia, essendo il dominio sconnesso (in particolare con 2 componenti semplicemente connesse), ad occhio mi verrebbe da dire che la forma non è esatta in tutto il dominio, in ...
Se $E$ è un campo di spezzamento del polinomio $p(x)$ a coefficienti in $Q$ di grado $n$, le cui radici indichiamo con ${x_1,x_2,...,x_n}$, sia $alpha$ un elemento primitivo tale che $Q(alpha)=E$ il suo polinomio minimo avrà grado uguale ad $[E]$?
Inoltre un tale elemento sarà lasciato invariato dalle permutazioni del gruppo di galois di $p(x)$ ,vero?
Che forma dovrà avere?
Una densità volumetrica di carica $\rho> 0$ è distribuita uniformemente nella regione infinita inclusa tra i due piani $x = a$ e $x = −a$, paralleli al piano $yz$. Quanto vale il campo elettrico in ogni punto dello spazio?
C'è una evidente simmetria del campo elettrico nelle $y$ e nelle $x$ per cui possiamo limitarci a calcolare la componenti in $x$ del campo elettrico. Poi non sapevo precisamente come fare e ho ...

Salve, sono al 1 anno di università (facoltà medicina e chirurgia) e sto analizzando uno studio scientifico in cui vengono riportati dati statistici ma non riesco a comprendere a pieno alcuni termini.
"La distribuzione normale delle variabili è stata valutata utilizzando il test di Kolmogorov-Smirnov.
Per misurare le differenze tra i gruppi sono state utilizzate analisi non parametriche (test U di Mann-Whitney, test di Kruskal-Wallis, test di Wilcoxon) per le variabili continue il Chi ...

Buongiorno, è corretto il seguente esercizio? Grazie.
Studiare la convergenza della seguente serie numerica. Se convergente, trovare $n_0$ tale che per $n \geq n_0$ la somma parziale $s_n$ approssimi la somma della serie a meno di 1/200.
$$\sum_{n=1}^{+\infty}\frac{\sqrt{1+3n}-1}{4n^2+1}$$
Svolgimento:
Osserviamo che per $n\geq 1$ risulta
$$\sqrt{1+3n}-1\leq\sqrt{1+3n}\leq ...
Dati il punto A(1,1) e il vettore u(3,2) determinare le coordinate dei vertici B e C del triangolo ABC, rettangolo in A, sapendo che il lato AB e’ parallelo a u e che il baricentro coincide con l'origine. Nella soluzione dell'esercizio l'equazione della retta AB e’ un sistema con x=1+3t e y=1+2t e l'equazione della retta AC ha come equazione un sistema con x=1+2t' e y=1-3t' e non capisco come le abbiano trovate.

Stavo riguardando un esercizio che avevo postato un po' di tempo fa. Si trattava di dover calcolare la trasformata di Fourier di $f = H(x)e^{-x}$. Adesso il mio problema è che avevo affrontato il problema forse con poca attenzione: la mia funzione $f(x)$ è tale che:
$ f(x) = \{ (e^{-x}, x > 0),(0, x<0) :}$
Adesso io la trasformata di Fourier la calcolo con la convenzione
$$ \mathcal{F}[f](k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty}f(x)e^{-ikx}dx$$
Adesso, io ho ...

Ciao a tutti, qualcuno saprebbe darmi una mano su questo esercizio?
Non saprei veramente da cosa partire, ho soltanto calcolato i vari angoli del triangolo rettangolo formatosi e la forza peso applicata nel centro di massa dell'asta, oltre a questo non saprei che approccio prendere per le richieste del problema