Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Domande e risposte
Ordina per
In evidenza
Sia V uno spazio vettoriale finitamente generabile e siano \( H1,H2,H3 \) sottospazi di V .
Si supponga che per ogni \( v\in V \) esistano e siano univocamente determinati
\( hi\in Hi \) tali che \( v = h1+h2+h3 \) . Dimostrare che \( V = H1\oplus H2\oplus H3 \)
Devo dimostrare che l'intersezione tra i tre sottospazi è uguale al singleton dell'elemento neutro e la loro somma è uguale a V, ma non riesco a capire come fare.
Grazie dell'aiuto
Sia \( f : R2\rightarrow R2 \)
un applicazione lineare diagonalizzabile che ammetta un solo autovalore di molteplicità geometrica 2
e tale che
\( f(2,0)+f(1,0) = f(2,0) \)
Calcolare i possibili valori per \( f(\pi ,\pi /4) \) .
Dalla relazione ricavo che : \( f(1,0) = (0,0) \ e
f(2,0)=(a,b) \)
Quindi avrò \( A = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \) da cui \( |A -tIn| = -t(a-t) \).
Ricavo \( a = 0 \) , dove la molteplicità ...
ciao a tutti,
io ho questo esercizio:
Discutere la dimensione del sottospazio $U$ di $RR^4$ generato da $(a,b^2,1,0)$ e $(2a + b,a−b,3 + c,2)$ al variare di $a,b,c in RR$.
Non sono sicuro sul procedimento e non avendo il risultato non riesco a capire se è corretto.
io per prima cosa ho ridotto con gauss.
ma mi restano comunque dei parametri liberi, ho esaminato la 2° sotto-matrice quadrata ed ho notato che per qualsiasi valore di ...
Salve ragazzi. Ho bisogno di aiuto per quanto riguarda l'omologia a coefficienti in R. L'esercizio è il seguente:
Calcolare l'omologia a coefficienti in R dello spazio topologico
X=R^3\{(x,y,z)/y=x^2,z=x^3}.
Grazie mille a chi mi aiuterà.
Buongiorno, in un esercizio svolto sulla somma diretta viene considerato lo spazio vettoriale $V =$ \( \Re^3 \) e due suoi sottospazi $S=Span((1,0,0)$, $(0,1,0))$ e $T=Span((2,0,0)$, $(0,0,1))$. A un certo punto viene detto che i vettori $w_1=(1,0,0)$ e $ w_2=(0,1,0)$ sono una base di $S$ mentre i vettori $v_1=(2,0,0)$ e $v_2=(0,0,1)$ sono un base di $T$. Ma com'è possibile che una base (ma anche solo un sistema di ...
Salve a tutti. Sto avendo problemi con esercizi di questo tipo:
Si consideri la curva
\(\mathbb{C}=\{[X,Y,Z] \in \mathbb{P}^2\mathbb{C} \mbox{ | }X^4-Y^4+Z^4=0\}\)
sia $p=[0,i,1]$. Calcola $l(np)$ per $n\geq0$.
Nell'esempio in questione ad esempio riesco a fare i casi $n\geq 5$ perché seguono dal teorema di riemann roch e dunque $l(np)=n-2$.
Per $n=4$ dato che la tangente in $p$ ha grado 1 e interseca la curva in ...
Ho questo quesito:
Sia X = $ (ax^3+ax^2+ax+a : a sube R) $ ,
Definire (se possibile) una applicazione lineare di X in R tale che non sia suriettiva.
Allora X ha dimensione 4, quindi l'applicazione per essere suriettiva deve avere immagine di dimensione 4, quindi se considero $ f: X rarr R $ come faccio ad avere dim 4 ?
Buongiorno a tutti.
Ho un dubbio assai banale ma del quale non riesco a venire a capo.
Su varie fonti si definisce la famiglia degli intorni $N(x)$ di un punto $x$, appartenente ad un generico insieme non vuoto $X$, come la famiglia degli insiemi di $X$ tale che valgano i seguenti 4 assiomi:
$1) \forall N \in N(x) \quad x \in N$;
$2) \forall N \in N(x)$ e $\forall M \subseteq X | N \subseteq M$ allora $M \in N(x)$;
$3) \forall N,M \in N(x) \quad N \cap M \in N(x)$;
$4) \forall N \in N(x) \quad \exists M \in N(x) | \forall y \in M \quad N \in N(y)$.
Adesso, i primi tre sono ...
Sia V = R4[x] × R2,2. Determinare due distinti sottospazi di V che siano isomorfi.
La dimensione di V è uguale a 5+4= 9.
Ha senso se considero :
$ H = < x^4,( ( 0 , 1 ),( 0 , 0 ) ) > $
dim H = 5+1 = 6
$ K = < x^3,( ( 1 , 0),( 0 , 1) ) > $
dim K = 4+2= 6
Buongiorno, ho il seguente sistema lineare \( \begin{cases} x_1+x_2+2x_3 = 5 \\ 3x_1-2x_2+x_3=0 \\ 7x_1-3x_2+4x_3=6 \end{cases} \) di cui devo calcolare il rango (per poi poter utilizzare il teorema di Rouche-Capelli).
Il rango della matrice incompleta (cioè quella con i soli coefficienti) è 2. Fin qui niente di particolare.
Nel momento in cui associo i termini noti (e cioè ottengo la matrice completa) il rango dovrebbe essere 3. Da quello che so però i termini noti non possono essere dei ...
Sia $ f : V rarr V $ una applicazione lineare che ammetta almeno un autovalore λ. Prendiamo v ∈ V che non sia un autovettore. E’ vero che l’autospazio V (λ) e il sottospazio $ < v> $ sono in somma diretta?
Allora $ V(lambda ) = (win V : f(w) = lambda w) $ quindi visto che v non è autovettore non appartiene all'insieme quindi $ V(lambda ) nn < v> = 0 $ .
Come faccio a dimostrare che la loro somma è uguale a V?
Salve.
Ho alcune difficoltà nel trovare in versore normale ad un piano $\pi$ nello spazio in una specifica situazione.
Non ho problemi se forniti 3 punti appartenenti al piano o se sono forniti direttamente due vettori:
Ne faccio il prodotto vettoriale:
$ det( ( \vec{e_x} , \vec{e_y} , \vec{e_z} ),( x_1 , y_1 , z_1 ),( x_2 , y_2 , z_2 ) ) $
Dove $ ( x_1 , y_1 , z_1 ),( x_2 , y_2 , z_2 ) $ sono i due vettori appartenenti al piano o ricavati come differenza dai 3 punti $\in \pi$. Procedo poi normalizzando il vettore ed il gioco è fatto.
Mi è capitato un paio di volte ...
Buongiorno ho due problemi che non riesco a risolvere:
1)Si dimostri che se $\langle, \rangle$ e’ un prodotto scalare in $R^n$ non degenere, NON definito positivo e NON definito negativo, esiste un vettore non nullo u ∈ $R^n$ tale che $\langle u, u \rangle$ = 0
2)Sia V uno spazio vettoriale finito dimensionale. Si dia
un isomorfismo tra V* ⊗ V* e lo spazio vettoriale delle forme bilineari su V SENZA fissare una base.
Per 1) avevo pensato di sfruttare il non degenere, ma non ...
Sia $X$ uno spazio topologico connesso, localmente connesso, localmente compatto e $T_2$. Dimostrare che per ogni due punti che si possono prendere in $X$, esiste un sottoinsieme $K$ di $X$ connesso e compatto che li contiene.
Rieccoci con degli esercizi di topologia!
Dimostrare che se $RR$ è omeomorfo a $X\timesY$ con $X,Y$ spazi topologici, allora uno tra $X$ e $Y$ ha un solo punto.
Dimostrare la stessa cosa con $S^1$ al posto di $RR$.
Ciao. Dico che due sottospazi \( W_1 \) e \( W_1^\prime \) di uno spazio vettoriale \( V \) sono disposti allo stesso modo (o che hanno lo stesso arrangement) se c'è un automorfismo che manda un nell'altro. Analogamente dico che le coppie di sottospazi \( (W_1,W_2) \) e \( (W_1^\prime,W_2^\prime) \) sono disposte allo stesso modo se c'è un automorfismo \( \varphi \) tale che \( \varphi_*(W_i) = W_i \), per \( i = 1,2 \).
Perché due soli sottospazi abbiano lo stesso arrangement è necessario e ...
Sia A matrice simmetrica reale (3x3, per semplicità ma penso valga pure nxn), e sia $\phi$ una sua funzione scalare isotropa, cioè tale che $\phi(A)=\phi(Q^TAQ)$ per ogni Q matrice di trasformazione ortogonale (cioè tale che $Q^T=Q^-1$). Provare che una tale $\phi$ dipende in realtà solo da $tr(A),tr(A^2),tr(A^3)$, ovvero $\phi(A)=\phi(tr(A),tr(A^2),tr(A^3))$(l'uguaglianza penso non sia funzionale ma solo numerica, e questo set di scalari è una cosiddetta base funzionale della funzione ...
Ciao a tutti!
Sono un po' di ore che provo a svolgere questo esercizio di algebra lineare su autovettori e autovalori di una matrice.
Il testo è il seguente.
Si consideri la matrice \( A=\begin{pmatrix} 2+k & 0 & -k \\ k & 3 & -1-k \\ k & -1 & 3-k \end{pmatrix} \).
Determinare per quali valori di \( k \) la matrice è diagonalizzabile e, per tali valori, trovare una base di \( \mathbb{R}^3 \) costituita da autovettori di \( A \).
Il primo passo per capire se una matrice è diagonalizzabile ...
Dimostrare che non esiste una funzione $f:RR->RR$ tale che l'insieme dei punti di continuità di $f$ sia $QQ$.
Suggerimento: non provare con argomenti di densità perché di funzioni che hanno $RR\setminusQQ$ come insieme di punti di continuità ne esistono. Se volete poi posso darvi un altro suggerimento ben più sostanzioso che vi indica la strada.