Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
NON E`VENUTA BENISSIMO, CI RIPROVO
mi riferisco sempre ad un integrale curvilineo, quello citato nel precedente intervento
$int_{gamma}{sintcostdt}$ su una curva $gamma: x^2+y^2=r^2$
dove gamma è l’arco contenuto nel primo quadrante degli assi del cerchio avente centro l’origine e raggio uguale ad r.
parametrizzo per risolverlo
$x = rcos t, y = rsin t$
$x’= -rsin t, y’= rcos t$
calcolo l’integrale nel verso antiorario (positivo), da A(0,r) a B(r,0) e
$║phi’(t)║ = sqrt{x’^2+y’^2} = sqrt{r^2sin^2(t)+r^2cos^2(t} = sqrt{r^2} = r$
e l'integrale diventa ...
Ciao! Scusate ma ho un problema con due esercizi.
Sia $ f(x) = o[x^k] $ per $ x->0 $. Dimostrare che $ o[x^5] + f(x) = o[x^5] $ per $ x->0 $ solo se $ k>5 $.
Sia $ f=o[x] $ per $ x->0 $. Dimostrare mediante la definizione che $ f = o[tan(x)] $ per $ x->0 $.
Il problema con questi due esercizi è che applicando la definizione mi ritrovo a svolgere dei limiti con l'o piccolo dentro. Come faccio?
Grazie!
Ciao ragazzi sto preparando l'esame di analisi (ingegneria informatica), nelle vecchie traccie della prof mi sono imbattuto in questo integrale doppio:
$\int int y^2dxdy$
da calcolare nella regione di spazio compresa tra l'ellisse di equazione $(x^2/4)+y^2=1$, la circonferenza di equazione $x^2+y^2=4$ e l'asse delle y nel primo quadrante.
convertendo in coordinate polari ${(x=p*cos(\theta)),(y=p*sen(\theta)):}$ ho il problema dell'ellissi, che mi porta ad un integrale complicato, potrei risolvere ...
descrivere un esempio di situazione concreta in cui x,y sono legate da una relazione lineare del tipo y=mx+q
Prima che scleri! Mi spiega come il prof da questa formula [math]\sum_{h=1}^n(\cos \theta+ i\sin\theta)^h[/math] è misteriosamente giunta a questa?
[math](\cos\theta+i\sin\theta)\frac{1-(\cos\theta+\i\sin\theta)^{n+1}}{1-(\cos\theta+i\sin\theta)}[/math].
La seconda parte ci sta, è il termine generale della serie. Ma quel fattore moltiplicativo all'inizio cos'è?!
Aggiunto 17 ore 50 minuti più tardi:
e purtroppo no! :( Il libro dice che ll'esponente è n+1! Non è un errore di stampa perchè PERSISTE FINO ALLA FINE della dimostrazione...
Aggiunto 3 ore 42 minuti più tardi:
NOn essere convinto io? Lungi da me non ...
Salve a tutti sono nuovo di questo forum. A breve dovrò fare l'esame di metodi matematici e mi sono imbattuto in un integrale di cui non riesco a trovare soluzione.
L'integrale in questione è
$ oint e^{3 /( z * ( z - 1 )) } dz $
Dove Gamma è il cerchio di centro 1 e raggio 5.
Ho provato a fare lo sviluppi di Laurent ma non ci sono riuscito.
Potreste darmi qualche suggerimento anche se riuscite a fare solo lo sviluppo di Taylor dell'integranda ?
Grazie
ps sono disperato
Caro Alxxx28 e altri
Quello che dici tu è sicuramente vero, il problema sorge quando c’è una funzione, riporto l’esempio seguente:
Calcolare l’integrale curvilineo
INTxyds su curva γ: x^2+y^2=r^2
dove γ è l’arco contenuto nel primo quadrante degli assi del cerchio avente centro l’origine e raggio uguale ad r.
parametrizzo per risolverlo
x = rcos t y = rsin t
x’= -rsin t y’= rcos t
calcolo l’integrale ...
Ciao a tutti, ho un dubbio: per scambiare $lim_(s->s_0) int f(x;s)dx$ e applicare la convergenza dominata bisogna per forza trovare una $phi(x)>=f(x;s)$ con $int phi(x)dx < +oo$, oppure basta verificare che $AA s_0, int f(x;s_0)dx < +oo$ ??
Ad esempio, se ho $int_0^(+oo) f(x;s)$ dove il problema è solo in $+oo$, se trovo una $g(x;s)$ tale che $lim_(x->+oo)f(x;s)/g(x;s)=1$ e $int_0^(+oo)g(x;s) <+oo$, posso scambiare $lim int f = int lim f$ ?
Grazie
Ragazzi ho ripreso con lo studio dei numeri complessi,e sono arrivato all'estrazione della radice n di un numero complesso,alla fine però rileggendo i miei appunti vedo scritto che basta moltiplicare per la radice n dell'unità immaginaria per ottenere le radici di altri numeri complessi,sarebbe una sorta di tip che ci aveva dato il prof....Solo che ora a distanza di tempo non capisco cosa ho scritto e nemmeno capisco che significato abbia. Se qualcuno mi puo aiutare gliene sarei grato.Grazie
Salve;
Se ho ad esempio
$ logx+ 1/logx -3 $ ; può essere lecito fare il minimo comune multiplo con denominatore ovviamente $ logx $ ??
ho un piccolo problema nel calcolare il resto nella forma di lagrange di $log(1-sin(x))$. Ho applicato la classica formula nel resto dato dal sin ma il problema si presenta nel momento in cui devo calcolare il resto del logaritmo.
P.S. l'esercizio prevede il punto x=1.
Dimostrare o confutare, giustificando la risposta, la seguente affermazione: poichè $ (i)^4 = 1 $ si ha che $ (1)^(1/8) = (i)^(1/2) $
A me viene vero anche se mi sembra strano. A voi?
Io ho fatto così:
$ (1)^(1/8) = ((1)^(1/4))^(1/2) = (i)^(1/2) $
Dove ho sbagliato?
Grazie!
Sto svolgendo uno studio di funzione e mi serve calcolare la derivata di $ e^{|x| } $.
La funzione è $ f(x) = xe^{|x| } $ e appunto quando devo fare la derivata prima e applico la formula del prodotto tra 2 funzioni ottengo: $ 1*e^{|x| } + x*e^{|x| } = e^{|x| } *(1+x) $
Ma c'è qualcosa di sbagliato perchè poi non torna la crescità e la decrescità del grafico della funzione e quasi sicuramente è la derivata di $ e^{|x| } $ dato che non sono sicuro di come si faccia.
Sapete dirmi come la posso ottenere?
...spero mi possiate aiutare, perchè è quasi un giorno intero che son sopra a questo studio di funzione senza riuscire a risolverla, perdendo del tempo prezioso per ripassare il resto...
f(x)=3+log(3^(3-x-x^2)-3)
sono riuscito a trovare il dominio, non difficile, ma da ciò in poi non riesco ad andare avanti...
purtroppo ho avuto l'idea di sostenere l'esame di analisi 1 soli dieci giorni prima la data dell'esame stesso, senza aver molto conoscenze... son riuscito a completare il programma ...
Supponiamo di voler sviluppare una funzione in serie di laurent attorno ad un punto,io so che la serie converge dentro una corona circolare di raggi $R1$
ed $R2$ dove la funzione è analitica. Come si trovano questi raggi? Io pensavo di fare così:
visto che la funzione per convergere dentro la corona deve essere analitica, per prima cosa mi trovo i poli della funzione poi mi calcolo il modulo dei poli che supponiamo siano $1$ e $7$ in ...
$int sin^3x dx $
$= - int (1-cos^2(x)) d cosx dx= -cosx -1/3cos^3(x) +C $
è errato ?
lo chiedo perchè so risolverlo in questa semplice maniera ma nel testo io ho visto risultati discordanti ; ma forse è solo scritto in altro modo....
qualcuno puo spiegarmi come verificare questo limite
lim x che tende 3 x-2/x-3= 00
grazie in anticipo
Aggiunto 1 giorni più tardi:
si si proprio questo scusate per la pessima scrittura
Aggiunto 1 giorni più tardi:
+
Devo studiare il carattere di questa serie $ sum (x^2)/(2+x^4)^k $
è corretto se applico il criterio della radice??così facendo ottengo che:
-converge se $ 1+x^4<0 $ il che non è mai verificato
-diverge se $ 1+x^4>0 $ sempre vero
- $ x^4=-1 $ non è mai possibile
In conclusione la serie diverge per ogni x
è corretto??
Salve a tutti
ho di fronte a me questo integrale $int (-7sin^2x)/e^x$ ma non ho idea di come si risolva.
Ho iniziato integrando per parti: $-7 int sin^2x* e^-x = -7e^-xsin^2x+7 int 2sinx*cosx *e^-x=-7e^-x*sin^2x+7 int sin(2x)*e^-x$
proprio quest' ultimo integrale non ho idea di come si risolva ($int sin(2x)*e^x$)
aiutatemi pleease!!!
Buongiorno a tutti
sul libro ho trovato questo esercizio molto curioso e ho iniziato a farlo
$intintxydxdy<br />
<br />
dove il dominio è $D:{(x,y): x^2+2y^20,y>0}
nel momento in cui passa a coordinate polari non riesco a capire perchè pone
$x=rhocostheta<br />
$y=sqrt2/2rhosentheta
mentre normalmente ponevo sempre
$x=rhocostheta<br />
$y=rhosentheta
Secondo me c'entra qualcosa il fatto che invece di avere la circonferenza ho l'ellisse ma non riesco a capire da dove arriva quel $sqrt2/2
Grazie mille