Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Mi scuso in anticipo per la poca originalità dell'esercizio.
Si scriva lo sviluppo di MacLaurin arrestato al quarto ordine di $f$, dove $f(x)$ è definita come segue:
$f(x) = sqrt(1 + x^2) - cosh(e^x - 1)$.[/list:u:3ujaag78]
Quindi:
$sqrt(1 + x^2)$[/list:u:3ujaag78]
lo sviluppo come segue:
$1 + 1/2 * x^2 - 1/8 * x^4 + (o(x))^4$[/list:u:3ujaag78]
Invece, ...
Ciao a tutti! volevo sapere se in generale, se $f\geq 0$ si ha che
\[
f(x)=\int_0^\infty \chi_{\{f
Date tutte le ipotesi del Criterio della Radice per le serie numeriche, dire che se definitivamente \(\sqrt[n]{a_n}>1\) allora la serie converge, vuol dire che $\exists n_0 \in \mathbb{N}: \forall n>n_0$, \(\sqrt[n]{a_n}>1\) allora la serie converge?
NB: Non so se si vedono, ma quelle sono chiaramente radici n-esime.
Sto studiando le serie di funzioni e sto facendo esercizi; non riesco a capire com'è svolto un esercizio poiché, inoltre, non conosco il famigerato "criterio degli infinitesimi" per le serie di funzioni.
Questa è la traccia:
Studiare la convergenza totale su \(\displaystyle ]0,+\infty[ \) della serie:
\(\displaystyle \sum_{n=2}^{+\infty} \;arctg\Big(\frac{n^2e^{x^2-1}}{\sqrt(x)}\Big)\frac{(n-1)log(n^2-1)}{n^{5/2}} \)
Svolgimento:
poiché \(\displaystyle \forall n \in ...
ho la seguente funzione:
$f(x)=log((x^2-9)/(5+x))$
l'esercizio mi dice:
"in tutto il suo insieme d'esistenza quale asserzione E' VERA"
1- $f$ ristretta in $]3,oo[$ è decrescente ------------->studiando la funzione in questo intervallo è crescente, quindi FALSO
2-$f$ non ha estremi relativi--------->qui ho qualche dubbio
3-$f$ è limitata inferiormente, ma non superiormente--------->FALSA in quanto questa funzione non è limitata
4-$f$ non ...
$lim_(x->0)xlog(1+1/x)=lim_(x->0)x(log1+log(1/x))$ ho provato a risolverlo in questo modo ma mi sono bloccato non riesco a procedere
$f(x)= log(x)/(e+xlogx)$ la funzione nn è definita per x minore = di 0. per determinare il dominio devo vedere se il denominatore si annulla per qualche x maggiore di 0. devo procedere in questo modo? come faccio?
Ciao a tutti il testo dell'esercizio è questo:
Sia a ∈ (0, $oo$) e sia $f_a$ : (0, $oo$)→ $RR$ definita come
$f_a$ (x) := $log (1+x^(2a)) / [x^(4a) + arctan (x^3)]$
i) Per quali a la funzione fa è prolungabile con continuità in x = 0?
ii) Per quali a la serie numerica $\sum_{n=1}^(oo)$ $f_a$ (n) converge?
Allora, dato che $f_a$ non è definita in x=0 devo vedere se il limite per x che tende a 0 esiste finito, giusto?
io ho ...
Come si risolve la seguente equazione: e^2z - 4e^z + 5= 0
Ho trovato che le radici sono: e^z= 2+i,2-i. Ma come si continua?
Ho i due seguenti integrali per i quali quali devo trovare i valori di [tex]\beta[/tex] affinchè risultano convergenti, praticamente devo studiare la convergenza dell'integrale, però avrei dei dubbi. Iniziamo dal primo integrale:
[tex]\int_{1}^{\infty }\frac{logx}{(x-1)^\beta}dx[/tex]
Quindi essendo [tex]1[/tex] escluso dal dominio ma compreso nell'intervallo di integrazione devo andare a fare il limite per [tex]x[/tex] che tende a [tex]1^+[/tex] e a [tex]∞[/tex]. Pertanto:
[tex]\lim_{x\to ...
Considerate la successione di funzioni
\[
f_n(x) = \frac{n}{\log{n}}x - n^2\sin\left( {\frac{x}{n\log n}}\right), \qquad \forall x \in \mathbb R, \quad 2 \le n \in \mathbb N
\]
e la serie di funzioni
\[
\sum_{n=2}^{\infty} f_n(x).
\]
Mi si chiede di:
1. stabilire la convergenza puntuale per ogni $x \in \RR$;
2. provare che la somma è continua su tutto $\RR$.
Ora, il punto 1 è semplice, si tratta di qualche conto. Vi domando gentilmente conferma dei miei ragionamenti, ma ...
Ciao a tutti, il problema di Cauchy è il seguente:
$ { ( x'=t-t/x ),( x(0)=1/3 ):} $
ora il mio dubbio è il seguente: nello studio qualitativo di tale problema ad un certo punto c'è scritto:
$ 0<phi(t)<1, AA t in (alpha, omega) $
dove $phi(t)$ è la soluzione del problema di Cauchy e $(alpha, omega) $ è l'intervallo massimale di esistenza.
io ho capito perché $phi(t)<1$ ($x -= 1$ è soluzione costante e $x(0)=1/3$) ma non capisco come si arrivi a dire che
$ 0<phi(t) $...
grazie mille in ...
ciao,
trovo difficoltà nel risolvere questo problema
$ { ( y''+y=1/cos(x)^3 ),( y'(0)=0 ),( y(0)=0 ):} $
ho provato col metodo di variazione delle costanti perchè sul libro c'è un esempio generale analogo al mio.
utilizzando le due soluzioni indipendenti della omogenea $ y1=cos(t) , y2=sin(t) $ e seguendo i calcoli che stanno sul libro mi è uscito quest'integrale generale
$y(t)=-1/2cos(t)+1/2+sin(t)^2/cos(t)+c1*cos(t)+c2*sin(t) $
poi trovo c1 e c2 che mi escono tutti e due nulli.
ho sbagliato qualcosa? Ho impiegato molto tempo a risolverlo. Forse c'era un modo più ...
Ciao, amici! Studiando la proiezione di una funzione ___PRESERVED_0___ su uno spazio \(\langle 1,x,...,x^{n-1} \rangle \)mi imbatto nella funzione
\[(c_1,...,c_n)\mapsto \int_{0}^{1} \left(\sum_{i=1}^{n} c_i x^{i-1} -f(x)\right)^2 \text{d}x\].
Nel punto critico dove il suo gradiente nelle variabili $(c_1,...,c_n)$ si annulla direi che si abbia un minimo e sospetto che questo possa essere garantito dalla convessità della funzione... Qualcuno potrebbe confermare o smentire?
$+oo$ grazie a tutti!!!
Consideriamo la funzione $f(x)=p_1log(1+x(u-1))+p_3log(1+x(d-1))$ con $p_1,p_3\in]0,1[$.
La derivata prima e' $f'(x)=(p_1(u-1))/(1+x(u-1))+(p_3(d-1))/(1+x(d-1))$ e si annulla in $x=(p_1(u-1)+p_3(d-1))/((u-1)(1-d)(p_1+p_3))$.
Si puo', senza fare altri calcoli, concludere che questo punto e' di massimo?
Ciao ragazzi...ho quest'integrale doppio $int int (1+y)dxdy $ sul dominio ${(x,y) in RR^2 : (x+1)^2 + (y+1)^2 <=5 , x>=0 , y>=0}$
volendolo fare con le coordinate polari, ho che $x= ro cost $ ed $y= ro sent $ con $t in [0, pi/2]$ giusto??
ora per trovare $ro$ inserisco le coordinate polari nel dominio e mi esce questa relazione:
$rocost >= 0$
$rosent >= 0$
$ro^2 + 2ro (cost + sent) - 3 <= 0$
sapete dirmi se fin qui è fatto bene e come continuare i calcoli perchè mi sono arenato grazie..
Salva a tutti Esercitandomi per il prossimo esame di Analisi II mi sono imbattuto in quest'esercizio:
Provare che l'equazione: $ f(x,y,z)=ze^(xy)-cos(x+yz)+xy-2y=0 $ definisce implicitamente $ z=g(x,y) $ nell'intorno del punto $ (0,0,1) $ . Calcolare inoltre la derivata prima e seconda di $ g(x,y) $ nell'origine.
Allora io il teorema di Dini l'ho sempre svolto per 2 variabili e per tre è la prima volta che mi capita. Il mio dubbio è, dovendo arrivare allo sviluppo di Mc Laurin, visto che mi ...
Ciao a tutti!
Visto che sto preparando l'esame di Analisi 2, vorrei sottoporvi un paio di quesiti a risposta multipla che sono usciti in una delle prove dell'anno scorso: non riesco a capire le soluzioni che il docente ha scritto.
I quesiti sono:
Sia $f: RR^2->RR$ una funzione continua. Allora:
1) f è differenziabile se esitono le derivate parziali ${delf}/{delx}, {delf}/{dely}$ (falso, la funzione potrebbe comunque essere discontinua nel punto)
2) se f è differenziabile esistono le derivate parziali ...
$lim_(h->+oo)x+loge|x|-loge|x^3-x|$ quel $loge$ sta ad indicare il log in base e
$lim_(h->+oo)(x/x+logex/x-loge|x^3-x|/x)x=(1+0-loge|x^3-x|/x)x=$....
$f(x)=x+loge |x|- loge |x^3-x|$ per il calcolo del dominio applico la proprieta dei log cosi la funzione diventa
$f(x)=x+loge (|x|/ |x^3-x|)$ quindi il dominio sarebbe $|x^3-x|=\0$ giusto?