Scuola

Discussioni su temi che riguardano Scuola della categoria Matematicamente

Didattica della matematica, storia e fondamenti

Temi di didattica, scambi di idee tra insegnanti e aspiranti insegnanti, storia e fondamenti della matematica.

Fisica

La scienza di pallette che cadono e sciatori che muoiono

Matematica - Medie

Sezione dedicata agli studenti delle medie che hanno incubi matematici

Matematica - Superiori

La scienza dei numeri, dei cerchietti e delle imprecazioni

Scervelliamoci un po'

Spazio dedicato a problemi assegnati a gare matematiche o olimpiadi della matematica, o ancora a prove di ammissione a scuole di eccellenza.


Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
asromavale1
quale proprietà applico quando dico che se $ a/b<c/d $ allora $ b/a>d/c $?
4
12 nov 2014, 09:42

pas9
La Bergensbana è la linea ferroviaria norvegese, lunga 493 km, che collega Oslo a Bergen. Un treno viaggia da Oslo verso Bergen mantenendo una velocità media costante di 110 km/h. Un'ora più tardi, un secondo treno parte da Bergen diretto verso Oslo, viaggiando con una velocità media costante di 90 km/h. A quale distanza da Oslo i due convogli si incrociano? Risultato del libro: 321 km
4
9 nov 2014, 17:18

diego 11
Mi aiutate su questo problema x favore non riesco da solo .. Calcola la lunghezza di una semicirconferenza che ha la misura del raggio di 11,5 cm ....(risultato 36,11 cm)
1
12 nov 2014, 10:16

Marytex
Salve. Un'informazione .. come posso scrivere $x=arctan(-(3^(1/2))+2*(2^(1/2)))$? Nel risultato del libro è stato sviluppato e compare un arcoseno di qualcosa. Quali sono i passaggi da fare per trasformarlo? Grazie
3
11 nov 2014, 18:35

ANMSS
Una sfera d'ottone piena, di raggio 1,0cm, viene elettrizzata con una carica elettrica pari a 8,0 microC. Quanto vale, in configurazione di equilibrio, il modulo del campo elettrico nel centro della sfera e sulla sua superficie? Quanto vale a 2,0cm dal centro della sfera?
1
11 nov 2014, 15:06

pas9
Per testare l'efficienza del sistema frenante una vettura, inizialmente portata alla velocità di 144 km/h, viene fatta rallentare decelerando costantemente di 2m/s^2, finché non si ferma. a) Quanto spazio percorre la vettura dall'istante in cui inizia a decelerare fino all'istante in cui si ferma ? b) Quanto tempo impiega per fermarsi? c) Quanto tempo impiegherebbe per fermarsi se, a parità di decelerazione, la velocità iniziale valesse la metà? d) Quanto tempo impiegherebbe per ...
1
11 nov 2014, 14:11

pas9
Problema da eseguire e da spiegare: Un carrello trasportatore si muove lungo un binario rettilineo lungo 30 m. Il carrello parte da fermo, accelera con accelerazione di modulo 2,1 m/s^2 per i primi 15 m, poi inizia a rallentare decelerando a 2,1 m/s^2 nei restanti 15 m. Sapendo che i tempi di accelerazione e decelerazione sono uguali, determina: a) il tempo impiegato dal carrello per percorrere l'intero binario; b) la massima velocità raggiunta dal carrello; c) dopo quanti secondi ...
1
11 nov 2014, 13:57

vittorio.natale.92
Nella circonferenza di un centro O e di diametro dei 200 cntimetri i raggi passanti per gli estremi della corda AB formano un angolo di 120° calcola il perimetro e l ' area del triangle AOB. Grazie
1
11 nov 2014, 18:22

Mr.Mazzarr
Salve ragazzi, sto facendo un po' di confusione con le disequazioni trigonometriche. Se mi trovo di fronte ad un valore '' noto '' del cerchio trigonometrico non ho problemi, ma se mi trovo di fronte ad una disequazione del genere: $costheta <= sqrt(3)$ non so come muovermi! Come posso ottenere il relativo valore in radianti? Avevo pensato di impostare questa proporzione: $pi/6 : (sqrt3)/2 = X : (sqrt3)$ E quindi otterrei il valore di $pi/(12)$ ma non sono sicuro d'aver svolto correttamente.
7
10 nov 2014, 15:31

Forconi
Buonasera, mi potreste aiutare con queste equazioni, non riesco a procedere: a) x^2 -kx -4 =0 Per quali valori di k l'equazioni ha soluzioni reali? ho impostato \Delta >= 0 cioè k^2 +16 >=0 --> k^2 >=-16 Ora non riesco a proseguire perché non esiste una radice quadrata di un numero negativo, Mentre il testo mi propone di scegliere fra le seguenti soluzioni: A)per k
4
10 nov 2014, 23:49

giulia00.gv
Due incognite!! Miglior risposta
Applicando opportunamente le proprietà del comporre e dello scomporre, determinare i valori di x e di y nella seguente proporzione: x:y=7:2 , sapendo che x+y= 144.
1
11 nov 2014, 16:42

gcappellotto47
Salve sto tentando di calcolare questo limite $\lim_{x \to \infty} (1+\frac{x}{2x^2+1})^x$ sostituzione: $y=2x^2+1$ $\lim_{y \to \infty} (1+\frac{\sqrt{\frac{y+1}{2}}}{y})^{\sqrt{\frac{y+1}{2}}$ ma non mi sembra il metodo adeguato... Grazie per i vostri consigli e saluti. Giovanni C.
3
11 nov 2014, 09:21

mediaw
equazione parametrica da matematica blu non riesco a risolvere questa, qualcuno può spiegarmi come si fa? kx^2-(2k-1)x+k-3=0 con x1+x20 io faccio così se x1+x2
1
9 nov 2014, 17:39

Ilariafalvo98
Aiutoo Matematicaa? Miglior risposta
Ho queste tre equazioni 2x-3y+6=0 3x+2y-30=0 x+5y-10=0.Disegnando le rette sul piano cartesiano esce un triangolo. Di Questo triangolo devo trovare perimetro e area.
1
11 nov 2014, 10:23

ramarro1
Come diamine si fa questo integrale?! io ho pensato di sostituire $t=logx$,cioè $x=e^t$,$dx=e^tdt$ cosi si avrebbe $intcos(t)(e^t)dt$ per parti:$F=cost$-----$F'=-sent$-----$G=e^t$----$G'=e^t$ $e^tsent-inte^tsent(e^t)$ ancora per parti: $F=e^(2t)$-----$F'=2e^(2t)$----$G=-cos(t)$----$G'=sen(t)$ $e^tsen(t)-(e^t(-cost))-int2e^(2t)(-cost)dt$ niente continuo a girare in tondo...
7
10 nov 2014, 18:25

gcappellotto47
Salve a tutti propongo questo limite: $\lim_{x \to \frac{\pi}{2}} (\frac{(2x-\pi) \cos(x)}{x(1-\sin(x))}$ sostituzione: $y=x-\frac{\pi}{2} \quad \quad x=y+\frac{y}{2}$ $\lim_{y \to 0} \frac{2y-\frac{\pi}{2}\cos(y+ \frac{\pi}{2})}{(y+\frac{\pi}{2})(1-\sin(y+\frac{\pi}{2}))}$ A questo punto non so come proseguire Gradirei qualche indicazione Grazie e saluti Giovanni C.

mattont2000
qualcuno sa darmi qualche appunto di fisica sugli ordini di grandezza?? grazie
1
10 nov 2014, 17:37

strongstrong
in un sistema di assi cartesiani i punti a(1;3), b(10;3) e c(10;8) sono 3 vertici di un rettangolo. determina le coordinate del quarto vertice e calcola l'area del rettangolo.
4
9 nov 2014, 17:18

frollo1
Ciao a tutti ,non so come fare questa disequazione fratta ,è urgentissimooo :/ 1/x-2>2 deve dare 2
14
10 nov 2014, 17:13

gcappellotto47
Salve Ho questo limite: $\lim_{x \to 0}\frac{\tan(x)}{e^{\sin(x)}-\cos(x)}$ ho calcolato con varie equivalenze asintotiche ed ho ottenuto un risultato pari a $1$. Per una mia curiosità, questo limite si può calcolare anche con i metodi usuali, tipo: sostituzione, limiti notevoli, ecc. ? Grazie e saluti Giovanni C.
4
10 nov 2014, 15:39