Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Scusa l'ignoranza ma non riesco proprio a capire e a svolgere questo esercizio,potreste aiutarmi?
Nello spazio vettoriale euclideo R4 dotato del prodotto scalare canonico, sono assegnati i vettori v1 = (2,1,3,0),v2 = (0,1,−1,1). Determinare una base per il sottospazio dei vettori che appartengono allo spazio generato dai due vettori dati e che sono perpendicolari a w = (1, 1, 1, 1).
ciao ragazzi =D
Volevo chiedervi ma le preposizioni di tempo sono solo 3 vero?:
-At
-In
-On
Le prepositions space sono under,near,next to,opposite,in front of,..ecc?
Poi in inglese quanti tipi di aggettivi abbiamo? io faccio il primo anno del classico, e fino ad adesso mi sembra di aver studiato solo gli aggettivi possessivi
Mentre gli avverbi? io ho studiato yet,already,still+ qll di frequenza, ce ne sono altri?
Studiare i punti critici della funzione:
$f(x,y)=(x+3y)e^(-(x^2+y^2)) = (x+3y)/ e^(x^2+y^2) $
velocemente il segno:
$f(x,y)=0 hArr y=-x/3$
$f(x,y)>0 hArr y > -x/3$
$f(x,y)<0 hArr y < -x/3$
calcolo le derivate parziali:
$(delf)/(delx) = (1 cdot e^(x^2+y^2) - (x+3y) cdot 2x e^(x^2+y^2))/e^(x^2+y^2)$
$(delf)/(dely) = (3 cdot e^(x^2+y^2) - (x+3y) cdot 2y e^(x^2+y^2))/e^(x^2+y^2)$
quindi studio $nabla f=0$
(studio il numeratore e raccolgo $e^(x^2+y^2)$ )
$(delf)/(delx)=0 hArr 1-2x(x+3y)=0 hArr 1-2x^2-6xy=0$
$(delf)/(dely)=0 hArr 3-2y(x+3y)=0 hArr 3-2xy-6y^2=0$
e da qui sono bloccato.. qualche idea su come risolvere il sistema??
Riassuntooo (70437)
Miglior risposta
Aiutooo..Io non sono mai stata capace di fare ciò...Mi servirebbe il riassunto dei primi 17 capitoli del libro ''Alèxandros''di Valerio Massimo Manfredi...Chi riesce ad aiutarmi per favore?? è urgenteeee..
devo affrontare questo esercizio ma nel caso delle quadriche non mi ci trovo.
sia $p:x^2+y^2+2xy+2x-2y=0$ la parabola assegnata.studiare la quadrica contenente $p$ e passante per i punti $C(0,2,-2)$, $D(-2,0-6)$, $E(0,1,1)$ e tangente in $O$ al piano di equazioni $x-y+z=0$
credo che è un esecizio che ha a che fare con i fasci di quadriche.però i so scrivere solamente i fasci di coniche.è la stessa cosa anche per le quadriche?
ciao!
la serie seguente mi crea tanti problemi in quanto non so che criterio usare.
$\sum_{n=1}^infty (sqrt(1+sqrtn)-root(4)(n))/n^(b+3)$
Per prima cosa ho concluso che si tratta di una serie a termini positivi,perchè la radice della radice di n, +1 è maggiore della radice quarta di n.
usando il criterio della differenza non ho concluso nulla,con il criterio della radice non ho concluso nulla,ho provato a scomporre la serie in due frazioni ma non riesco a trattare la doppia radice.
potete aiutarmi per favore?
grazie!
y = e^(2x-1) +4
y = -(1/2)^x +1
y = - 2 - 5^(x-1)
Ragazzi il mio testo dice "Immadiatamente si ha che il valore atteso della variabile aleatoria contatore di successi è $p$,e la sua varianza è $p(1-p)$".
Ma non ho capito da dove esce!
Qualche aiuto?
Ho capito la normale,la chi quadro,ecc..ma questa mi sfugge!
ho dei problemi con i limiti di successione: ad esempio non riesco a calcolare $ lim_{n \to \infty}root(n) ((2^n + 3^n)/ 5^n) $....
Salve a tutti.
Avrei un dubbio, quando viene chiesto di trovare l'ordine di infinitesimo di una funzione in un punto, è sufficiente costruirsi lo sviluppo in quel punto della suddetta funzione e osservare il grado del primo termine?
Esempio:
L'ordine di infinitesimo della funzione $ logx $ per $ x->1 $
Io mi sono calcolato lo sviluppo con la formula di Taylor, e mi viene:
$ -3/2+2x-(1/2)x^2+o(x^2) $
Devo concludere che l'ordine di infinitesimo è ....?
un dominio del tipo $R^2$-{0,0} non è semplicemente connesso giusto? quindi la forma differenziale con tale dominio non è esatta e quindi non posso trovarne una primitiva vero?
Ciao a tutti
c'è questa equazione differenziale del secondo ordine: ($y^2$ è derivata seconda di y)
$\{(y^2-y=3x),(y(0)=0),(y^1(0)=1/2):}$
che ho risolto con il metodo dell'unione tra le soluzioni dell'omogenea associata e della soluzione particolare e mi risulta :
$ 7/6e^x-7/4e^-x-3x$
ma dovrebbe risultare:
$7/2sinhx-3x$
non capisco cosa ho sbagliato,potete aiutarmi?
Ogni volta che incontro un esercizio del genere
Calcolare lo sviluppo asintotico per $x\rightarrow +\infty$ della funzione
f(x)=$\frac{x^2}{1-2x^2+x^3}$
in potenze di $x^-1$ e con precisione di O($x^-4$)
non so come impostare l'esercizio: so( o meglio credo) che devo usare taylor, ma come?
potreste farmi vedere risolvendo questo la procedura? grazie mille
Ciao a tutti! Avrei una domanda sulla Relatività Generale. Come si fa ad arrivare all'equazione di campo di Einstein partendo dalle proprietà dei tensori di Riemann $R_{\mu\nu\rho}^{\sigma}$ e Ricci $R_{\mu\nu}$, dall'equazione della geodetica ${d^2 x^\sigma}/{ds^2}+\Gamma_{\mu\nu}^\sigma {dx^\mu}/{ds} {dx^\nu}/{ds}=0 $ e dall'equazione di Gauss della divergenza del campo gravitazionale $\nabla * \vec {g} =-4 \pi G \rho$ ?
Buona sera!
Nel tentare di risolvere il seguente problema mi sono ritrovato a svolgere conti che mi lasciano abbastanza perplesso, sicchè mi chiedevo se qualcuno può dare un occhiata tanto per vedere se salta fuori qualche errore.
Allora il problema è il seguente:
"Calcolare il flusso di $\RotV$ entrante da $\Sigma$, dove:
$V\equiv(x-2yz,2y+x^2z^2,z^2-x^2-y^2)$
$\Sigma={2x^2+2y^2=(z-1)^2, 0<=z<=2}$
Calcolo il flusso totale del rotore di V sommando la circuitazione sulla circonferenza alla quota 2 e la ...
Salve, sto studiando la differenziabilità ed ho risolto questo esercizio, solo che non ho la possibilità di verificare se lo svolgimento è giusto, spero possiate controllarlo e dirmi se ci sono errori.
"Si consideri la funzione $f(x,y)=x^4+y^4-3(x-y)^2$
Stabilire, giustificando la risposta, se la funzione f è differenziabile."
La formula da applicare (presa dal Marcellini-Sbordone) è $lim_((h,k)->(0,0))(f(x+h,y+k)-f(x,y)-f_x(x,y)h-f_y(x,y)k)/sqrt(h^2+k^2)=0$ quindi calcolo le derivate parziali, sostituisco e ottengo questo: $lim_((h,k)->(0,0))(6h^2x^2+4k^2y^2+(4h^3+6h-6k)x+(4k-6h+6k)y+h^4+k^4)/sqrt(h^2+k^2)$
Dato che ...
Salve a tutti. Dovrei scrivere lo sviluppo fino all'ordine 4 di questa funzione ma trovo delle difficoltà:
$ f(x)=(1+cosx)^2sinx $
Allora, sapendo lo sviluppo del coseno $ cosx=1-x^2/2+x^4/24+o(x^4) $ , mi sono scritto lo sviluppo di $ 1 + cosx $
$ 1+ cosx=2-x^2/2+x^4/24+o(x^4) $ è giusto?
Dopodichè dovrei elevarlo al quadrato, ma viene un conto assurdo. Sbaglio qualcosa?
Solo con la teoria del libro non riesco a capire se gli o piccoli mi permettono una sostanziosa semplificazione in questi conti. Se qualcuno ...
Salve a tutti,
nella preparazione per l'esame di metodi matematici per l'ingegneria mi sono trovato a volte di fronte a problemi di questo tipo:
Calcolare l'antitrasformata di Fourier di $\X(omega)=e^(-omega^2)$.
Che si traduce nel calcolo di $\1/(2 pi) int_{-infty}^{+infty} e^(-omega^2) e^(j omega t) d omega$.
Ora, sapendo che $\int_{-infty}^{+infty} e^(-omega^2) d omega = sqrt(pi)$, ho provato ad effettuare questa sostituzione: $\x = omega sqrt ((jt)/omega -1)$ e quindi $\ dx = sqrt ((jt)/omega - 1) d omega$.
Mi ritrovo con $\1/(2 pi sqrt ((jt)/omega - 1)) int_{-infty}^{+infty} e^(-x^2) dx = sqrt (pi)/(2 pi sqrt ((jt)/omega - 1))$.
Credo di aver sbagliato la derivata, ma a parte quella, possono avere senso i miei ...
Salve a tutti ,
come posso comportarmi con questa serie??
Soprattutto con il $ (-1)^n $ dentro il seno..
$ sum_(n=2)^(oo) sin[ [(-1)^n]/[log(n)]] $
ciao
Salve ragazzi, mi sono imbattuto in questo simpatico esercizietto:
Sia $G$ un gruppo di ordine $60$. Dire se è vero o falso che:
i) $G$ ha sempre un sottogruppo normale non banale
ii) $G$ è sempre un gruppo semplice
Allora, per il punto i) ho provato ad applicare i Teoremi di Sylow. $60$ si fattorizza come $60=2^2*3*5$ quindi, detti $s_2$, $s_3$ ed $s_5$ rispettivamente il numero dei ...