Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Simonkb24
Devo calcolare il seguente integrale: $intint_D (x-2)^2 dxdy$ dove $D={(x,y): x^2+y^2>=1,|x|<=2,|y|<=2}$ purtroppo non riesco a fare le limitazioni di x ed y avevo pensato anche di farlo come area del quadrato =16 meno l'area del cerchio $pi$ ma dopo mi sono reso conto che cosi andavo a calcolare solo $intint_D dxdy$ e non l'integrale della funzione..Qualche suggerimento? Grazie
2
14 giu 2011, 16:13

tenebrikko
salve a tutti! ho il seguente dubbio: devo dimostrare che la $sqrt2$ ha una sola soluzione negli $RR$ positivi comincio dicendo che $0<\alpha<\beta$ e che $\alpha^2 = 2 $ e $\beta^2 = 2$ percui $2= \alpha^2 < \alpha $ 3 $2= \beta^2> \beta$ quindi ottentgo $2<2$ che è assurdo quindi la soluzione è unica. questo è ciò che ho trovato negli appunti.. ma non capisco su che basi dico che $\alpha^2 < \alpha$ è giusto come ragionamento? grazie!
6
14 giu 2011, 10:07

Darèios89
In questo esercizio ho un dubbio: Sia [tex]f:R^3->R^3[/tex] un endomorfismo defnito mediante le immagini dei vettori della base [tex][v1 = (1; 2; 3); v2 = (0; 1; 2); v3 = (1; 0; 1)][/tex] dalle assegnazioni: [tex]\left\{\begin{matrix} f(v_1)=(2,4,6)_E\\f(v_2)=(1,2,5)_E \\f(v_3)=(2,2,4)_E \end{matrix}\right.[/tex] Determinare Kerf, Imf e una loro base. Io devo fare qualche cambiamento? Oppure semplicemente visto che le immagini sono in base E posso semplicemente considerare la ...

Pic#22
∫∫$(ln(2x+3y+2)/(2y-x+15)^2)dxdy$ Su P definito da i 4 punti A -3,2 B 5,6 C 14,0 D 6,-4. Sono alle prime armi con gli integrali doppi,se qualcuno può darmi una mano a svolgere questo sarebbe di grande aiuto. Per semplificare vi metto anche le rette: 2y-x-7=0 3y+2x-28=0 2y-x+14=0 3y+2x=0 So che bisogna fare la sostituzione con u e v, per stiracchiare il parallelogramma e farlo diventare un rettangolo,solo che quando sostituisco u e v nella mia f(x),non ho idea di come svolgere ...
4
13 giu 2011, 13:10

ingtlc
ragazzi ho un dubbio l'intervallo numerico $ 0<=|t|<=T/4 $ equivale a $ -T/4<=t<=T/4 $ $uu$ $0<=t$ $uu$ $t>=0$ e quindi si considera solo $ -T/4<=t<=T/4 $ Help
3
14 giu 2011, 16:55

kioccolatino90
Ciao a tutti non so riesco a trovare le soluzioni della derivata prima della funzione $y=(-4x^3-4x)/(x^4+2x^2-8)^2$ escono delle equazioni con $x^6$ ma non mi trovo.... Non posto tutto il calcolo della derivata che è abbastanza lungo, posto pochi passaggi... $y'=((-12x^2-4)(x^4+2x^2-8)^2-2(4x^3+4x)(x^4+2x^4-8)(-4x^3-4x))/(x^4+2x^2-8)^4=$ $ ((x^4+2x^2-8)[(-12x^2-4)(x^4+2x^2-8)-2(4x^3+4x)(-4x^3-4x)])/(x^4+2x^2-8)^4=$ $((x^4+2x^2-8)[-12x^6-28x^4+88x^2+32+32x^6+32x^2+32x^4+32x^2])/(x^4+2x^2-8)^4=$ $(4(5x^6+x^4+38x^2+8))/(x^4+2x^2-8)^3$ però ora non riesco a risolvere la disequazione dove sbaglio?
7
18 mag 2011, 20:27

Ryuzaky*
Come posso risolvere questo integrale ? [tex]\int \sqrt{6x-8-x^2} dx[/tex] Non mi viene in mente alcuna nostituzione [/tex]
8
12 giu 2011, 22:13

manuxy84
Ciao a tutti, sono alle prese con questo esercizio: Una boccia da bowling di massa $m$ e raggio $R$ viene lanciata in modo tale che, all'istante in cui tocca la pista, si muova nella direzione orizzontale alla velocità $v_0=5m/s$, senza rotare. Il coefficiente di attrito dinamico tra la boccia e la pista è $mu_d=0,3$. a) Trovare l'intervallo di tempo durante il quale la boccia striscia prima che sia soddisfatta la condizione per il rotolamento. b) ...

kaia88
Salve a tutti, devo studiare la seguente funzione $f(x,y)= log (x/y+y/x) $. Mi trovo in difficoltà nel classificare i punti critici: $f1(x,y) = ( 1/ ( x/y + y/x)) * ( 1/y - y/(x^2))$ $f2(x,y) = ( 1/ ( x/y + y/x))* ( 1/x - x/(y^2)) $ ponendo le due derivate uguale a zero trovo che esse si annullano per ogni coppia $(a,a)$, $(-a,-a)$, $(+a,-a)$, $(-a,+a)$ appartenente ad $R$ applicando ora il metodo dell'hessiano per classificare tali punti critici, il determinante della matrice viene nullo perciò non posso ...
2
14 giu 2011, 12:03

kioccolatino90
Ciao ragazzi, volevo fare una piccola domanda; se in un intorno di un punto vi cade almeno un punto del dominio allora ne cadono infiniti; quindi se suppongo di avere un intorno fatto del tipo $I=]x_0- epsilon; x_0+ epsilon[$ in cui vi cadono almeno un numero finito di punti del dominio indicati con $x_i$ e chiamo $m=min dist{x_i;xo}_(i=1,...,n)$ si ha di conseguenza che nell'intono di $I_1=]x_0-m; x_0+m[$ non cade nemmeno un punto del dominio contrariamente a quanto detto sopra.... io non ho capito perchè ...

rosannacir
Ciao a tutti, ho un problema con il calcolo dei limiti dei questa funzione $ f(x)=\frac{1}{\arcsin (x^{2}-4x-6)-\frac{\pi }{2}}$ nei punti $x=2-\sqrt{11}$ e $x=2+\sqrt{11}$ (dove uno dei due ricavo per simmetria). Non so proprio come procedere. Come posso fare? Mi dareste una mano? Grazie
5
13 giu 2011, 18:34

boulayo
Salve a tutti, ho fatto quest'esercizio, ma vorrei una conferma da parte vostra di non essermi sbagliato nei ragionamenti, visto che temo di essermi perso qualcosa: "Con un opportuno cambio di variabili calcolare l'integrale" $\int\int_{D}^{} sin(e^{2x} + e^{2y})e^x e^y dx dy$ dove $D = {(x,y): e^{2x} + e^{2y} <=m}$ Io ho fatto il cambio di variabili $e^x = k$ $e^y = j$ così diventa $\int\int_{D}^{} sin(k^2 + j^2) dj dk$ dove $D = {(k,j): k^2 + j^2 <=m}$ Poi ho passato il sistema in coordinate ...
5
14 giu 2011, 11:53

nikismile1
$ sum_(n = 1)^( oo ) (2n!)/(n!)^2 $ Salve! devo sostenere l'esame di Analisi matematica 2 e ho problemi a dimostrare che questa serie diverge.. Qualcuno potrebbe gentilmente spiegarmi i passaggi che mi portano a dire che la serie diverge? Grazie!!
7
13 giu 2011, 23:42

ghiozzo1
La faccio breve...non ho proprio capito come si calcola il modulo di una "funzione complessa" (perdonatemi il termine se non è appropriato...comunque intendo una funzione dove compare l'unità immaginaria $i$). In particolare, mi capita molto spesso di dover trovare il modulo al quadrato (di trasformate di Fourier), ecco due esempi: $X(f)=(1/e)*e^(-i10pif)/(1/5+i2pif)$ e il modulo al quadrato risulta: $(1/e^2)/((1/5)^2+(4pi^2f^2))$ $Y(f)=sinc(f)(e^(-i3pif)+2e^(-i5pif))$ e il modulo al quadrato risulta ...
6
13 giu 2011, 23:34

mpulcina
sia dato un filo rettilineo molto lungo che corre lungo l'asse z e percorso da una corrente I=5A. si calcoli il campo magnetico B=(Bx,By;Bz) generato dal filo nei punti P1=(3,4,0)cm e P2=(-2,5,2)cm. é la prima volta che faccio un esercizio del genere e non so neanche da dove partire! Datemi un aiutino per svolgerlo insieme.

rizzellidj
Salve, ragazzi non capisco una cosa come fa un limite a cambiare punto a cui tende? mi spiego meglio: ho trovato questo esercizio online e durante lo svolgimento c'è questo passaggio che non riesco a capire: .. $ lim_(x -> -3) (x^2 + 1 / sqrt(x+3) ) = (lim_(x -> -3) x)^2 + lim_(x -> -1) (1/sqrt(x+3)) $ .. come potete vedere alla fine il limite da -3 tende a -1 ..come mai? c'è qualche proprietà che mi son perso? grazie
3
14 giu 2011, 13:01

leed1
Salve a tutti! Un esercizio mi chiede di calcolare il seguente limite: $lim_(x -> log(1/2)) ln(4e^(2x) - 4e^x + 1)$ che è uguale a $-oo$. Poi mi chiede di calcolare la più semplice funzione asintotica per $x-> log(1/2)$. Sono ore che ci ragione e sinceramente non dove sbatterci la testa. Grazie anticipatamente
9
14 giu 2011, 11:56

Tommy85
$1+x^3>0$ la risolvo cosi: $x^3> -1$=> $x> -1$è giusto?
6
13 giu 2011, 10:51

gianluca700
salve, vorrei sapere se il piano di equazione cartesiana 5x+y+z-1=0 è corretto esprimerlo in forma parametrica nel seguente modo: y=t z=t x=1/5-2/5t grazie

djyoyo
Buongiorno a tutti.. Più leggo il libro (Analisi Matematica 2 Bramanati-Pagani-Salsa PAG.276-278) più trovo difficoltà a trovare delle regole generali per la risoluzione di integrali doppi generalizzati. A lezione abbiamo solo affrontato tipi di integrali la cui convergenza era dimostrabile analiticamente calcolando effettivamente il valore dell'integrale in funzione di un parametro di cui fare il limite a $ + oo $ (scusate se uso una terminologia molto "pratica"). Tuttavia in ...
10
2 feb 2010, 12:51