Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Ciao!
Chi mi aiuta con sto maledetto problema?
"Supponete di dover generare con un disco carico di raggio R una certa intensità di campo nel punto P=2,00R dal centro del disco. L'analisi dei costi vi induce a optare per un disco piatto di medesimo raggio esterno R e raggio interno pari a R/2,00. Se la densità di carica non cambia, di che percentuale si riduce l'intensità del campo in P?
Il risultato è 28%.
P.S.: a me è portato 31%
Salve ragazzi sono nuovo di questo forum e tra pochi giorni ho l'esame di analisi I, quindi credo che mi vedrete spesso su questo sito per cercare di capire qualcosa in più su questo esame.
Iniziamo dai numeri complessi..
Questa è la traccia di esame...
Calcolare nel campo complesso
radice quarta di 2-i
secondo me devo calcolare le radice quarte...Mi calcolo prima il modulo e mi viene radice di 5
quando vado a calcolarmi l'argomento principale mi viene una cosa strana di solito la prof ...
Salve, ho cercato ovunque senza risultati come poter parametrizzare un'ellisse ad esempio: $\{(x^2+y^2=4),(z+x=2):}$ da poter utilizzare nel Teo di Stokes
La soluzione al problema è la seguente $\{(x=x),(y=y),(z=2-x):}$ con x e y appartenenti a $D={(x,y) : x^2+y^2 <= 4}$ ,
però non sono indicati i passaggi per cui non riesco proprio a capire come fare... Qualcuno che mi potrebbe aiutare gentilmente? Grazie...
Salve ragazzi ho un dubbio sulla parte finale della dimostrazione del teorema delle forme differenziali esatte.
Enuncio prima il teorema:
Sia $omega:A supe RR^2->RR$, A aperto di $RR^2$, continua in A e prese
$gamma,gamma_1 e gamma_2$ curve regolari a tratti contenute in A.
Valgono le seguenti proprietà:
1)$omega$ è esatta
2)$AA gamma$ regolare a tratti chiusa contenuta in A vale $int_(gamma)omega ds=0 $
3)$AA gamma_1,gamma_2$ regolari a tratti chiuse con stesso verso contenuta in ...
Ciao! Sto tentando di risolvere un esercizio sugli ordini di infinito ma non riesco bene a capire come applicare i criteri del rapporto o radice in questo caso.
L'esercizio chiede di ordinare le successioni per ordine crescente di infinito le successioni in questione sono:
1) $(n!)^2$
2)$(n!)!$
3)$2^(n!)$
se qualcuno puoi darmi un consiglio.
Grazie
ciao a tutti, ho queste due funzioni: $ f(x; y; z) = (x + y + z)^2; g(x; y; z) = x^2 + 2y^2 + 3z^2: $
devo calcolare il massimo e il minimo di f sull'insieme $ E = [f(x; y; z)^T in IR^3 : g(x; y; z) <= 1]<br />
<br />
pensavo di usare il metodo dei moltiplicatori di Lagrange, quindi mi creo la funzione: $ F (x,y, lambda) = (x+y+z)^2 + lambda(x^2+2y^2+3z^2) $ e poi mi calcolo le derivate, ecc... il problema è che mi vengono dei conti assurdi e quindi sospetto di aver sbagliato qualcosa da qualche parte. Voi che dite?
Salve a tutti,
La mia prof di Analisi II mi ha presentato come conseguenza delle formule di Green Gauss il fatto che per controllare l'esattezza di una forma differenziale lineare in caso di dominio con "buchi" basta controllare che, se presa una curva chiusa che circonda il buco, questa viene zero in quanto (per GG) "se viene zero su una sarà zero su tutte"! (e Sapete spiegarmi perchè?
Grazie in anticipo!
$T : R4 [t] ->M22 (R) $
$ T(p) = | p(0) p(1) | $
$ |p"(0) p(-1) | $
mi spiegate solo perchè non è iniettiva? grazie! ( le barre indicano la matrice)
Ciao, sto affrontando il discorso della diagonalizzazione di una matrice e volevo sapere se quanto ho appreso è corretto.
Se si verificano le seguenti condizioni, e cioè che:
1) ho un'applicazione lineare $T$ definita, per esempio, da $V$ a $W$, e una base di $V$ è data dai vettori $v_1..v_n$;
2) si verifica che $T(v_i)=a_i * v_i$, cioè la base di $V$ è un insieme di autovettori;
Allora, se $A$ è una ...
dovrei risovere questo semplice sistema ma non mi viene il risultato e al momento non ho nessuno a cui chiedere
200x-10y-100
30y^(2)-10x-10
avrei bisogno di sapere tutti i passaggi. grazie
so solo la soluzione x=0,536 y=0,72
$ { ( y'=(log(x))/y^4 ),( y(1)=1 ):} $ $ { ( y'=(log(x))/y^4 ),( y(1)=1 ):} $
questa la mia risoluzione
$ dy/dx=(log(x))/y^4rarr int_()^() y^4 dy=int_()^() log(x) dxrarr y^5/5=xlog(x)-int_()^() dxrarr y^5/5=x(log(x)-1)rarr y=root(5)(5x(log(x)-1)) $
quindi se fino a qui è giusto dalle condizioni iniziali
$ 1=root(5)(-5) $
stranamente ho sbagliato qualcosa...
sulle equazioni differenziali ho fatto più di 30 esercizi e finora mi tornavan tutti...ora ne ho trovate un paio a variabili separabili che mi creano qualche problema...chi mi sa dire dove ho sbagliato...?!?
Come posso risolvere il $lim_(k to + infty )((k!)^3)/((3k)! ) 27^k$ ? Le ho provate tutte ma non riesco a trovare il modo per risolvere anche perchè ho svolti pochi limiti con il fattoriale..
salve ragazzi, ho due problemi di geometria che proprio non riesco a risolvere pochè non capisco che procedimento usare, vi elenco i due problemi.
1. Data la retta r di equazioni (2x + y = 0 e 2x + z - 1 = 0), la retta s di equazioni (x - y = 0 e x - z + 1 = 0) e il piano di eq. y - z = 0, determinare il piano contenente la reta r ed ortogonale al piano dato.
io ho calcolato i direttori della retta r e il vettore affinchè i due piani siano ortogonali (mi viene il vettore 0,1,1) ma non ...
Si tratta di un problema composto da più quesiti, ve ne mostro solo uno poiche' su gli altri non ho riscontrato dubbi.
f: R^3->R^3
f(1,2,k)=(2+k,3,0) , f(2,k+1,-1)=(1,1,-2) , f(-3,1,5)=(1,k,2)
Per il valore k del punto (B) provare che R^3=Im(f) + Ker(f) e determinare la proiezione di 5e1 su Im(f) rispetto a questa decomposizione.
p.s. il k in questione è =1 , e i vettori sopra scritti sarebbero in realta' scritti in colonna.
Io attraverso la formula della dimensione sono giunto ...
Salve a tutti, l'esercizio è il seguente:
In un reattore si fanno reagire azoto e idrogeno per produrre ammoniaca.
[tex]N_2 (g) + 3H_2 (g) \leftrightarrows 2NH_3 (g)[/tex]
[tex]1000 \mbox{ }L[/tex] di [tex]H_2[/tex] misurati a [tex]298 \mbox{ }K[/tex] e a [tex]12 \mbox{ }atm[/tex] reagiscono con un eccesso di [tex]N_2[/tex]. Si formano [tex]2244 \mbox{ }g[/tex] di ammoniaca. Trovare la resa percentuale della reazione.
Vi descrivo il mio procedimento; applicando la legge dei gas ...
Ho un pendolo in quiete e mi viene data la lunghezza del filo e la massa collegata. Ad un certo istante gli viene data una forza J impulsiva orizzontale. Mi si richiede di calcolare il valore di J affinche il pendolo riesca a compiere un giro circolare.
Ho impostato l'equazione dell'impulso, ma non riesco a pensare come impostare l'equazione di conservazione di energia meccanica per ricavarmi il valore della velocità iniziale per trovare J...
Sicuramente questo integrale è facile da risolvere, ma non ci sono riuscito . I metodi di sostituzione che suggerisce il mio libro non mi hanno portato lontano... L'integrale è questo
[tex]\displaystyle \int \dfrac {1}{(a+x^2)^{3/2}}dx[/tex] Avevo provato a porre [tex]t=a+x^2[/tex] ma la situazione si complica. Forse non è la sostituzione migliore?
Ciao a tutti, giungo con l' ultimo di una lunga serie di esercizi:
Il processo gaussiano stazionario $X_t$ ha media nulla e covarianza $k_X(\tau) = 4e^-|\tau|$
Calcolare:
(a.) la densità di probabilità di $X_3$;
(b.) la funzione caratteristica congiunta di $X_-1$, $X_3$ e $X_4$
(c.) la densità spettrale di potenza di $X_t$.
Intanto essendo un processo a media nulla, la covarianza sarà uguale alla correlazione, quindi per il ...
Ragazzi vorrei sapere se il procedimento per queste serie è corretto e se qualcuno fosse così gentile ad aiutarmi a capire come dovrei procedere per la 7:
Vai a http://img121.imageshack.us/i/23405812.jpg/
Vai a http://img40.imageshack.us/i/60633432.jpg/
Vai a http://img98.imageshack.us/i/15683278.jpg/
Vai a http://img41.imageshack.us/i/24265416.jpg/
Aspetto con ansia una risposta.
Salve a tutti,
avrei bisogno di una mano con il seguente esercizio:
Provare la convergenza totale della serie di funzioni $ sum_(n= 2)^(oo) n ln (1+ ( |x|^n)/(n(n-1)^2)) $
Osserviamo che il termine generale $fn(x)=n ln (1+ ( |x|^n)/(n(n-1)^2))$ tende a zero solo se $ |x| \leq 1 $;
La serie può convergere in x se e solo se $ x in [-1,1] $;
Fissato $ x in [-1,1] $ si ha:
$|fn(x)|=n ln (1+ ( |x|^n)/(n(n-1)^2)) \leq n ln (1+ ( 1)/(n(n-1)^2))
Mi sono bloccato qui; che altro maggiorante posso trovare??
Mi potreste ...