Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza

Ciao a tutti,
ho questa funzione: $z= 3/2x^2 + 3xy - 1/2y^2 -1$ , un triangolo T in R2 di vertici, P1(1,1) P2(2,1) P3(2,2).
Devo calcolare il volume del cilindroide relativo alla funzione z, con base t.
Dunque ecco il mio procedimento:
Devo determinare il dominio. Per quanto riguarda x dovrebbe esser semplice ovvero $1<=x<=2$, mentre per la y prima mi devo calcolare le rette passanti per P2P3 e P1P3.
La retta P2P3 è immediata, ovvero $x=2$. La retta P1P3 è la retta ...

Buongiorno,
volevo aprire un nuovo argomento perchè, a meno due giorni dall'esame di fisica 1, mi rimangono ancora alcuni dubbi.
Il problema non sta di per se nel risolvere un problema, ma nell'impostazione.
Principalmente questi sono:
1) Forze Apparenti
2) Conservazione del Momento angolare e della quantità di moto
1) Forze Apparenti:
Il dubbio sorge perchè non riesco a capire il significato di alcuni termini della formula generale:
\(\displaystyle \vec{F_R} = \vec{F_A} + \vec{F_T} + ...

Salve a tutti!
Non riesco a svolgere il seguente esercizio potete dare un occhiata per favore!?
Sia L(W) lo spazio vettoriale generato dalla famiglia W={u1(3,1,2,1) ; u2(3,1,1,-2) ; u3(1,1,0,1) ; u4(-1,-2,1,1) ; u5(2,-3,1,2) ; u6(1,2,0,-1)}; trovare la dimensione e una base di L(W).
Per stabilire la dimensione devo studiare il rango della matrice associata:
R(A)=Dim(L(W))
R(A)

ciao a tutti...
ecco una domanda che per molti sarà semplice e banale ma che per me è irrisolta:
Se ho questo tipo di funzione: $z= -1/(sqrt2)sqrt(x^2+y^2-6xy-2)$ come mi devo comportare? cioè come faccio a togliere la radice? c'è un modo?
grazie

Dimostrare che per nessun $n>=3$ i gruppi $S_n$ e $A_nxZZ_2$ sono isomorfi.
Come al solito la cosa mi pare logica. Anche se hanno la stessa cardinalità i due gruppi se prendo:
-n=3
In $S_3$ ci sono 3 elementi di ordine 2, 2 elementi di ordine 3 e un elemento di ordine 1
In $A_nxZZ_2$ ci sono 2 elementi di ordine 3, 2 elementi di ordine 6, un elelemento di ordine 1 e un elemento di ordine 2
-n=4
In $S_4$ ci sono 9 elementi di ordine ...

Un punto materiale, partendo da fermo, si muove su una circonferenza con un'accelerazione angolare $w'=kt$ con $k=2,0*10^(-2) s^(-3)$. Dopo quanto tempo dall'inizio del moto il vettore accelerazione forma un angolo di $60°$ con il vettore velocità?
Io ho ragionato cosi. Integrando, ho calcolato la legge $w(t)$ che, moltiplicata per il raggio della circonferenza, fornisce la funzione $v(t)$. Quindi ho derivato rispetto al tempo tale funzione, ottenendo ...

Ciao a tutti,
Ho la seguente quadrica: $z=5/4x^2 - sqrt3/2xy + 7/4y^2$
e l'esercizio chiede: "sia C la conica ottenuta sezionando la quadrica Q con z=1. Determinare il tipo utilizzano i metodi della geometria proiettiva.".
per fare questo esercizio io farei in questo modo.
Metto a sistema $ { ( 5/4x^2 - sqrt3/2xy + 7/4y^2 -z =0 ),( z=1 ):} $
quindi
$ { ( 5/4x^2 - sqrt3/2xy + 7/4y^2 -1 =0 ),( z=1 ):} $
a questo punto mi fermo.. come devo continuare?
posso classificarla nel metodo standard? discriminante + sottomatrice ed eventuali segnature?

trovare la superficie del cono di equazione $x^2-y^2=z^2$ all' interno del cilindro $x^2+y^2=2ax$.
Mia soluzione: proietto sul piano $xy$ la superficie del cono $S=intint_(S)sqrt(1+x^2/(y^2+x^2)+y^2/(y^2+x^2))dxdy$, poi passando alle coordinate polari mi viene: $int_(-pi/4)^(pi/4)int_(0)^(2acos(theta))sqrt(2)a^(2)rcos(theta)/sqrt(cos(2theta))drd(theta)$ che alla fine facendo i calcoli mi dà $3pia^2/2$ che non è il risultato

Dopo averne motivato l'esistenza calcolare massimo e minimo assoluto della seguente funzione
$|x - 1|e^(3x)$
nell'intervallo [0,2]
Salve, avrei bisogno di qualche suggerimento nella risoluzione di questo esercizio.
La premessa doverosa penso che sia che la funzione prevede massimo e minimo assoluto poiché rispondente alle ipotesi del teorema di Weierstrass.
Dopodiché cosa mi conviene fare?
La mia idea sarebbe quella di studiare la monotonia calcolando la derivata prima, vedere i valori ...

"Si consideri la serie $\sum_{n=1}^(+oo) (sqrt(n^5+2)-sqrt(n^5))/n^3 (3^x-1)^n$. Determinare l'insieme I dei valori del parametro x per cui la serie converge."
E' una serie di potenze, penso che il modo migliore per risolverla è applicare il teorema di d'Alembert ma arrivo ad un punto in cui non so come andare avanti
Applico il teorema di d'Alembert: $\lim_(n->+oo)(a_(n+1))/a_n=l$.
$a_(n+1)/a_n=((sqrt((n+1)^5+2)-sqrt((n+1)^5))/(n+1)^3)/((sqrt(n^5+2)-sqrt(n^5))/n^3)$=$((sqrt((n+1)^5+2)-sqrt((n+1)^5)) n^3)/((n+1)^3 (sqrt(n^5+2)-sqrt(n^5)))$ a questo punto non so che fare, mi date una mano? Grazie

Ho trovato un esercizio interessante su questo argomento. Ne approfitto per aprire un post di semi-teoria per spiegare a chi abbia voglia di ascoltarmi che cosa sono di bello gli ultraprodotti.
Innanzi tutto consiglio una lettura di questo post, per le generalità sugli ultrafiltri. Per trattare l'argomento nella sua generalità e con pieno rigore sarebbe opportuno avere un'infarinatura di teoria dei modelli. Il teorema principale che si ottiene in questo contesto è il teorema di Los. ...

Ragazzi questo già mi risulta più difficile ( pensate un po' -.-''' ...), perchè ?????????
"Una camera doppia per tre notti in un albergo di Londra costa 216 sterline. Quante sterline costerà per cinque notti ? Quanti euro per una notte se il cambio è 1 euro= 0,9046 sterline?"
Devo trasformare il numero decimale in frazione?

"Il suono nell'aria viaggia ad una velocità di 340 m/ sec. Completa la tabella relativa allo spazio percorso (y) in funzione del tempo (x). Rappresenta graficamente i dati e rispondi."
Il libro per ora, mi riporta: x = 1 ed y= 340 , poi x= 2 ed y = 680, dopo: 3, 5 e 10.... devo moltiplicarli per 2, giusto?=

ho un problema cn la funzione:
$1/sqrt(x+|x^2+1|)$ ps: tutto il denominatore è sotto radice
essendoci la radice $x+|x^2+1| >= 0$ ma essendo a denominatore deve essere diverso da 0 quindi
per me il dominio si trova ponendo $x+|x^2+1|>0$ ma come faccio poi?

Cerco di spiegarmi meglio visto che il titolo forse non è dei migliori.
Sto studiando i simboli di Landau, e ho dei dubbi riguardo tutti gli altri simboli eccetto asintotico e o-piccolo (quindi O-grande ecc.).
Innanzitutto scrivo qui quello che ho capito dell'o-piccolo, in modo da chiedere conferma a voi di aver capito un po' cosa rappresenta/come funziona.
Data la definizione di o-piccolo come : \(\displaystyle an = o(bn) \) se lim x->+inf \(\displaystyle an/bn = 0 \)
Di conseguenza se ...

Salve ragazzi mi potete svolgere passo per passo queste frazioni algebriche? io so fare le scomposizioni,tutte, ma non mi vengono ste frazioni algebriche (
Per favore aiutatemi eccole:
PS: / = fratto
PRIMA
a-1/a+1 - 15a+11/1a² + 3a/a-1 =
SECONDA
4y+x/xy - [ x-y/y(x-2y) - 1/ x - 2y + 4/xy] =
TERZA
(1/b-y + 3/b+y - 2by/b³-by²) (y/b-y - 5by-y²/y²-b² - 6by/b²-y²) =
Grazie in anticipo! Vi prego di fare passo dopo passo cosi le confronto con le mie e vedo cosa ho sbagliato! GRazie ancora!

Avendo una funzione, come si verifica la continuità della funzione stessa in un intervallo dato? Non ho problemi per la continuità in un punto, ma nel caso dell'intevallo non so come verificare. C'è un procedimento standard per tale verifica? Vi ringrazio in anticipo per le risposte .

La questione che presento qui nasce da questo topic e da un successivo scambio di PM con dissonance.
Si pone il seguente
Problema. Data una funzione $f: (a,b) to RR$ derivabile su $(a,b)$, si può dire che $f(x)$ è monotona su qualche sottointervallo di $(a,b)$?
Ci si propone di dimostrare il fatto, se questo è vero; in caso contrario, si chiede di trovare le condizioni sufficienti (precisando se sono anche necessarie) affinchè lo ...

Ciao stavo dimostando un pò di teoremi sulle identità approssimate, e sono arrivato ad un punto morto circa una sottigliezza sulle convergenze.
Se definiamo $h_n$ una successione di funzioni in $L^1(RR)$ con le seguenti proprietà
i)$ h_n(x)>=0 $ per ogni $ x, n$
ii)$ int_(-infty)^(+infty) h_n(t) dt=1 $ per ogni $ n$
iii)$ lim_n ( int_(-infty)^(-sigma) h_n(t) dt + int_(+sigma)^(+infty) h_n(t) dt) =0$ con $sigma>0$
Grazie ad un teorema so che se ...

So che l' equazione principale è [tex]v=v_0+at[/tex] e
[tex]x=x_0+v_0t+\frac{1}{2}at^2[/tex]
Leggo che rimuovendo t dalle due equazioni si ottiene:
[tex]v^2=v_0^2+2a(x-x_0)[/tex]
Esattamente per eliminare cosa si intende? Cambiare le due equazioni ottenendo le uguaglianze per t?