Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Urgente (122945)
Miglior risposta
Che cosa sono i vettori? Come si possono sommare?
Buonasera.
Ho questo problema:
Si determinino i centri delle sfere di raggio $sqrt(11)$ tangenti a $\Pi : x - 3y + z + 1 = 0$ tangenti a $\Pi$ nel punto $A(0,0,-1)$
il numero direttore del piano è $(A,B,C) = (1,-3,1)$
Condizione di tangenza che lega il piano e il raggio:
$|a A + b B + c C|/(2 sqrt( A^2 + B^2 + C^2)) = r $
Formula del piano tangente:
$x_1 x + y_1 y + z_1 z + a/2 (x+x_1) + b/2 (y+y_1) + c/2 (z+z_1) + d = 0$
gli faccio il passaggio del punto
ottengo:
$z (-1 + 1/2) + a/2 x + b/2 y + c/2 + d - c/2 = 0$
$a - 3 b - c = 2 sqrt(11) sqrt(11) = 22$ (2)
dato che conosco i numeri direttori del piano ...
Matematichiamoci
Miglior risposta
Come si svolgono le diseguazioni?
Aiutoooo matematicamente
Miglior risposta
Cosa sono le diseguazioni?
Ciao ragazzi, mi sta venendo un dubbio assurdo, mi chiedo: se una funzione ha come dominio tutto l'insieme dei numeri reali tranne un punto e come codominio tutto R, sia suriettiva... Nel punto escluso dal dominio ha un asinto verticale.
Io ho pensato che per essere suriettiva ad ogni y deve corrispondere una x la cui immagine sia proprio quella y, dato che il codominio è più grande del dominio, ci sarà una y che non avrà immagine e quindi secondo me non è suriettiva.
Salve a tutti, mi viene richiesto in un esercizio:
Si utilizzi il criterio di Nyquist per studiare la stabilità del sistema a ciclo chiuso con funzione di anello L(s) al variare del parametro k:
$L(s)=k(s-1)/(s^2+2)$
non riesco a tracciare l'andamento del diagramma di Nyquist
Mateeeeematica
Miglior risposta
se non riesci a capire la materia, matematica, cosa devi are per impararla? per me è troppo complicata:( io provo a studiare ma è inutile.....
Ecco i quesiti della categoria L1 (2°,3° e 4° superiore dal 9 al 16) dei giochi d'autunno 2013 organizzati dal centro pristem della bocconi.
Inserite le risposte che credete siano corrette, così le confrontiamo. Se volete chiarimenti su qualche quesito chiedete pure, se posso vi aiuterò.
Classificare i p.ti critici di una funzione di due variabili e det. min e max assoluti in un Dominio
Salve a tutti! Torno a postare i miei dubbi esistenziali
Vorrei solo conferma sullo svolgimento dell'esercizio e, nel caso facessi errori, di segnalarmeli. Ecco a voi il testo:
Classificare i punti critici della funzione:
$ f(x,y)=(y-1)(y^2-x^2) $
Determinare minimo e massimo assoluti di f nel triangolo chiuso di vertici:
$ (0,0), (1,1), (1,-1) $
Svolgo in questo modo l'esercizio. Impongo che le derivate parziali rispetto a x e y della funzione di due variabili siano uguali a ...
Sto cercando di risolvere questo esercizio;
Dice: nello spazio di banach $ L^2 ([0,1]) $ si consideri l'operatore lineare $ V:f(x)toV(x)f(x) $ $ AA f in L^2([0,1]) $
dove
$ V(x)= { ( x),( 1-x ):} $
nel pirmo caso se $ 0<=x<=1/2 $
nel secondo caso se $ 1/2<=x<=1 $
A) Si domostri che V è limitato.
Il libro lo risolve così:
L'operatore è limitato in quanto per ogni $ f in L^2 ([0,1]) $
$ ||Vf||^2= int_0^1|V(x)f(x)|^2dx<=Sup_(x in[0,1])|V(x)|^2int_0^1|f(x)|^2dx = 1/4||f||^2 $
Ecco... per quale motivo viene fuori 1/4 ???
Se devo ...
Buongiorno ragazzi..ho un problema nel risolvere i sistemi di congruenze con più di due equazioni. Sono confuso perché mi hanno detto che si risolvono con più di un metodo..come il teorema cinese del resto. Potete schiarirmi le idee per favore? Per esempio come si risolve :
$ { ( x-= 2(mod 5) ),( x-=0(mod 4) ),( x-=4(mod7) ):} $
Grazie mille anticipatamente (:
Ho un problema.... grosso!!
lim x->1 {[ln(e^(x-1)-cos(x-1)]-[ln(ln x)]}/(x-1)
dovrebbe risultare 3/2
se qualcuno può aiutarmi a mettere passo passo la risoluzione ne sarei grato. Se possibile non con Taylor.
Grazie
Ciao, amici! I sottogruppi \(C^i (G)\leq G\) sono definiti come \[C^1 (G)=G,\quad C^{i+1}(G)=[G,C^i (G)]\]dove per \([G,C^i (G)]\) si intende il sottogruppo generato dagli elementi di forma \([a,b]:=aba^{-1}b^{-1}\) con \(a\in G,b\in C^i (G)\). Quindi \(C^2 (G)\) è per esempio il sottogruppo commutatore, o derivato che dir si voglia. Si dice nilpotente un gruppo per cui esiste un $n\in\mathbb{N}$ tale che \(C^n (G)=\{e\}\), $e$ elemento neutro del gruppo. Mi si perdoni ...
Scusate se apro una discussione non essendomi ancora presentato, ma ho un dubbio che ho urgenza di risolvere.
Mettiamo di avere una lastra di acciaio lunga 1 chilometro a 20° C. Se la temperatura aumentasse a 40°C, per trovare la lunghezza finale bisognerebbe fare così:
$L_f$ = (1000 (1 + 12 x $10^-6$ x 20))m
$L_f$ = (1000 + 0,24)m
$L_f$ = 1000,24m
Ora riportiamo la lastra alla temperatura originale (quindi ora $L_f$ diventa ...
Dire se la funzione f(x)= x|x+1| è continua e derivabile nel punto x = -1.
Continuità:
[math]lim_{x\rightarrow -1^+} x|x+1| = -2 [/math]
[math]lim_{x\rightarrow -1^-} x|x+1| = -2[/math]
[math]f(-1) = x|x+1| = -2[/math]
la funzione è continua al punto x= -1
Derivabilità:
[math]lim_{h\rightarrow0^±}\frac{f(x_{0}+h)-f(x_{0})}{h}[/math]
[math]lim_{h\rightarrow0^±}\frac{x+h|(x+h)+1| - x|x+1|}{h}[/math]
sostituisco al posto di x = -1
[math]lim_{h\rightarrow0^±}\frac{-1+h|(-1+h)+1|+1|-1+1|}{h}[/math]
[math]lim_{h\rightarrow0^±}\frac{-1+h(1+h)+1+2}{h}[/math]
[math]lim_{h\rightarrow0^±}\frac{-1+h+h^2+3}{h}[/math]
[math]lim_{h\rightarrow0^±}\frac{h+h^2+2}{h}[/math]
faccio adesso il limite h-> 0
[math]lim_{h\rightarrow0^±}\frac{h+h^2+2}{h} = \frac{2}{0}= \infty[/math]
quindi la funzione non è derivabile nel punto -1.
DEVO SVOLGERE QUESTI ESERCIZI
1 - DETERMINARE L'EQUAZIONE DELLA CIRCONFERENZA PASSANTE PER I PUNTI:
A (1;3)
B (-2;-3)
C (0;3)
ESSENDO x² + y² + ax + by + c = 0
METTENDO A SISTEMA OTTENGO X2 + Y2 -X +Y -12 = 0
2 - DETERMINARE LE COORDINATE DEI PUNTI DI INTERSEZIONE CON GLI ASSI CARTESIANI
PER AIUTARMI HO FATTO IL GRAFICO
SE L'EQUAZIONE DELLA RETTA E' y = mx + q
y2 - y1
m = --------------
x2 - x1
SOSTITUENDO:
EQUAZIONE RETTA AB => – y1 = m (x-x1) ...
Se la ruota di un carro ogni secondo fa due giri e fa suonare un campanellino in quindici minuti quante volte fa suonare il campanellino?
Miglior risposta
se la ruota di un carro ogni secondo fa 2 giri e fa suonare un campanellino, in quindici minuti quante volte fa suonare il campanellino?
$ C^0([-1,1]) $Ho un dubbio su un passaggio matematico in questo esercizio.
Dice:
Si consideri lo spazio metrico completo $ C^0([-1,1]) $ delle funzioni continue nell'intervallo $ [-1, 1] $ a valori complessi con la distanza
$ d(f,g)= Sup _(-1<=x<=1) |f(x)-g(x)| $
Si determini se la successione di funzioni $ f_n(x)= sqrt(1/n+x^2) $ è di Cauchy.
Nella risoluzione dell'esercizio mi dice che la successione è di Cauchy in quanto
$ d(f_n,f_m)= Sup_(-1<=x<=1)|sqrt(1/n+x^2) -sqrt(1/m+x^2)| = |1/n-1/m| to 0 $
Come fa ad arrivare a $ |1/n-1/m| $ ?? Grazie per la ...
Limite esame Analisi1
Miglior risposta
ciao chi mi aiuterebbe a risolvere questo limite ?
n^2 + n*√(n^2 + 1)
n-> -∞
fa - 1/2 ma non so come arrivarci :(