Matematicamente
Discussioni su temi che riguardano Matematicamente
Domande e risposte
Ordina per
In evidenza
Salve, quale dei due testi scegliere per analisi matematica I ad ingegneria? Sono entrambi consigliati:
Marcellini Sbordone Liguori editore
SAnalisi matematica I - Salsa Pagani Zanichelli Editore?
Avete suggerimenti?
Pregi? Difetti?
Problema di termodinamica (220981)
Miglior risposta
4 moli di gas perfetto biatomico eseguono un ciclo reversibile costituito da una espansione adiabatica che porta il gas dalla pressione p1 alla pressione p2= (1/17) p1 , una trasformazione isocora che porta il gas dalla pressione p2 alla pressione p3 = 3 p2 ed infine una compressione isotermica che riporta il gas al volume v1 . Il rendimento del ciclo è
a)0,31
b)0,26
c)0,40
d)-0,04
e)0,50
Ciao a tutti, un esercizio mi chiede di trovare autovalori, autovettori di verificare se la matrice di partenza A è simile alla matrice diagonale D.
$ A=( ( 0 , 0 , 0 , 0 ),( 1 , 1 , 3 , -2 ),( 1 , 0 , -3 , 0 ),( 2 , 2 , 6 , -4 ) ) $
Ho calcolato il polinomio caratteristico: $ x^4+6x^3+9x^2 $
Ho trovato gli autovalori (tra parentesi scrivo le rispettive molteplicità algebriche): $ 0(ma=2) $ e $ -3(ma=1) $;
La matrice D risulterebbe quindi: $ D=( ( 0 , 0 , 0 ),( 0 , 0 , 0 ),( 0 , 0 , -3 )) $
Ho trovato gli autovettori (gli scrivo già dentro la matrice P in modo ordinato con ...
Ciao a tutti, ho qualche dubbio di teoria sui metodi di risoluzione delle travature iperstatiche, in particolare non riesco a capire:
-Come valutare nell'equazione di congruenza la presenza di molle, cedimenti e temperature (sia distribuzione lineare che a "farfalla")
-Nel metodo della linea elastica a volte ho dei dubbi sulle condizioni di continuità da imporre ai vari vincoli in mezzo alla trave, come il glifo o il pendolo
Potreste illuminarmi a riguardo? O anche darmi dei link che ...
Un recipiente contenete acqua viene spinto verso l’alto, mediante un’opportuna forza, con accelerazione costante A , di modulo pari ad un quarto dell’accelerazione di gravità. All’interno del recipiente si trova una sferetta di volume V = 4 cm3 e densità sconosciuta d, collegata al fondo del recipiente mediante un filo inestensibile di massa trascurabile.
Sappiamo che la tensione del filo, durante il moto del recipiente, vale 4 * 10^(-2) N
1) Quanto vale la densità della sferetta?
Avrei bisogno di aiuto per provare il seguente fatto.
Sia $G$ un gruppo nilpotente e $N$ un suo sottogruppo normale non banale. Vorrei allora provare che $[N,G]$ è un sottogruppo proprio di $N$.
Il mio tentativo:
Ho provato questo fatto.
Sia $H$ è un sottogruppo di $G$ e $N$ normale in $G$. Allora
$[H,G]<N$ se e solo se $HN/N\subset Z(G/N)$.
Come potrei usare questo fatto? ...
PARAMETRIZZAZIONE ARCO CIRCONFERENZA (integrale curvilineo)
Miglior risposta
Ciao a tutti! mi aiutate parametrizzaziore questo arco di circonferenza?
l'esercizio dice: data la forma differenziale (xlogy - x^2)dx + (x^2/(2y))dy, calcolarne l'integrale curvilineo lungo l'arco di circonferenza di centro O(0,0) e raggio 2 di primo estremo A(2,0) e secondo estremo B(0,2).
vorrei capire il metodo per parametrizzare una circonferenza e un arco di circonferenza in generale così da applicarlo ad altri esercizi :dozingoff :dozingoff
vi ringrazio :hi :hi :hi
ragazzi mi aiutereste con alcuni esercizi di fisica
1)Un anello M=0.6kg e R=15cm rotola senza strisciare da una rampa alfa=30deg. Calcolare a_alfa
2)Asta M=0.2kg e L=120cm ruota intorno ad un perno posto a 24cm dal CM con ω=5giri/s. Calcolare mom. ang.
3 Un cilindro rotola senza strisciare su un piano inclinato alfa=8deg. Quanto vale a del CM?
4Una macchina di Hatwood ha una carrucola R=20cm e M=2kg. Calcolare I?
Se le masse appese ad una carrucola M=1kg, R=15cm sono M1=1kg e ...
Studio di una funzione con logaritmo ed esponente e
Miglior risposta
Ragazzi posso chiedervi un aiuto con una funzione? Grazie mille a priori, vi sarei eternamente grato se poteste anche spiegarmi i vari passaggi
f(x)=log(e4x+3-4x)
dove 4x+3 è l'elevazione a potenza di e (scusate ma sul post non riesco a riportare l'apice)
Grazie a tutti, davvero
L'ho risolto ma non mi trovo con il risultato, verificate anche vuoi se il procedimento è corretto?
Siano $V=(-1,2)$ ed $A(1,1)$; determinare il punto $B$ in modo che il vettore $AB$ abbia modulo $ sqrt(5) $ e sia ortogonale ad $V$. Quante soluzioni ammette il problema ? [Soluzioni: (2,1) e (-2,-1)]
$ABx=Bx-Ax=X-1$
$ABy=By-Ay=Y-1$
$V \cdot AB = Vx \cdot ABx+Vy \cdot ABy = 0 hArr -1\cdot(X-1)+2\cdot(Y-1) = 0 hArr X = 2Y -1$
il punto $B$ avrà ...
Un recipiente contiene n=5 mol di gas perfetto biatomico
alla temperatura T0= 190 K. Esso è chiuso superiormente da un pistone di
massa trascurabile che può scorrere in verticale senza attrito. Il pistone e le
pareti del contenitore sono impermeabili al calore, mentre la base inferiore è
diatermica, e la capacità termica complessiva del recipiente con il suo pistone
è pari a C0 =4.5 kJ/K. La base inferiore del recipiente viene messa in
contatto termico con un corpo di capacità termica C1 =3 ...
Secondo me il mio cervello mi ha abbandonato
Miglior risposta
ragazzi help: Una bicicletta di massa 13 Kg ed il ciclista di massa 82 Kg stanno viaggiando alla velocità di 30 m/s. Ad un certo momento il ciclista incomincia a pedalare producendo una forza (costante) risultante orizzontale di 9,8 N che accelera il sistema ciclista/bicicletta. Quale sarà la velocità dopo 8 secondi?
salve a tutti ho qui una traccia e molti molti dubbi...
la traccia è la segnuente:
scrivere l'equazione della conica contenente i punti $A=(1,-1)$ $B=(-1,1)$ avente la retta AB come diametro nella direzione data dal punto $P_00=(1,0,0)$ e tale che i punti $R=(0,1)$ ed $Q=(3,-1)$ siano coniugati.
la retta AB e' :$x+y=0$ calcolata con la formula della retta per due punti..
so che due punti sono coniugati quando l'uno appartiene alla polare ...
Equazione piano
Miglior risposta
salve a tutti! ho quest'esercizio di geometria che non riesco a risolvere:
assegnato un piano di equazione 3x-2y+z=0 scrivere l'equazione di un piano parallelo ad esso e passante per il punto P(1,2,-3) e le equazioni della retta ad essi perpendicolare e passante per l'origine del riferimento
:hi :hi :hi
Mi viene data l'equazione di $V\in \RR^3$ $x-2y+3z=0$ e mi si chiede dopo aver trovato la base di $V^\bot$, di dire se esiste un sottospazio $U!=V^\bot$ in modo da avere $U$ e $V$ in somma diretta.
Come lo faccio a dimostrarlo?
Io ho trovato la base di V $B_V={((2),(1),(0)), ((-3),(0),(1))}$ e quindi la base ortogonale è per definizione $V^\bot=<w,v_1> =<w,v_2> =0$ dove $w \in \RR^3$ è un vettore qualunque e $v_1, v_2$ sono i due vettori che compongono la base ...
Salve, volevo sapere se lo svolgimento del seguente esercizio è corretto:
"Dato l'endomorfismo $f : RR^4 \to RR^4, f(x,y,z,t) = (9x + 6y, 6x + 4y, -2x + 3y + 13z + t, 10t)$, determinare la controimmagine del vettore $\vec v = (1, h-4, 0, 2h)$ al variare del parametro $h$."
Per prima cosa ho scritto la matrice associata all'applicazione lineare:
$A = ((9,6,0,0),(6,4,0,0),(-2,3,13,1),(0,0,0,10))$. Si avrà che $\vec v = Af^-1 (\vec v)$. Scopro che la matrice A ha le prime due righe linearmente dipendenti, quindi $rk(A) = 3$ e quindi ottengo la matrice completa $(A|\vec v) = ((6,0,0,1),(4,0,0,h-4),(3,13,1,0),(0,0,10,2h))$ (ho ...
Urgentissimoooo! Problemi con equazioni in campo complesso
Miglior risposta
Ciao a tutti. Qualcuno potrebbe spiegarmi come risolvere questa equazione complessa?
[math]2z^4 = i (\overline{z} )^2 |z|[/math]
Grazie mille in anticipo
In un esperimento tipo pendolo balistico il proiettile ha massa \(\displaystyle m \) e velocità \(\displaystyle v \) e penetra nel corpo in un tempo \(\displaystyle τ \); la massa totale dopo l’urto è \(\displaystyle M \).
Calcolare il valore della forza media sul proiettile durante l’urto.
Io l'avevo scritto come \(\displaystyle F=(MV-mv)/τ \), dove \(\displaystyle V \) è la velocità finale, ma nella soluzione riporta solo \(\displaystyle F=(MV)/τ \),
qualcuno sa il perchè? grazie
salve avrei bisogno del vostro aiuto con il seguente integrale.
Stabilire se il seguente integrale sia convergente o meno:
[math]\int_{0}^{1}\frac{dx}{e^{x}-cosx}[/math]
grazie.
Ciao a tutti, studiando mi sono imbattuto nel seguente esercizio
Dimostrare che ogni estensione algebrica di un campo $K$ di caratteristica $0$ ($char K = 0$) è separabile.
Ho provato a dimostrare ma senza usare il fatto che l'estensione è algebrica, quindi penso sia sbagliata:
Su un campo $K$ di caratteristica $0$ ogni polinomio non costante è separabile, ovvero $K$ è perfetto.
Sappiamo che ...