Matematicamente

Discussioni su temi che riguardano Matematicamente

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
Ragazzo1231
ho letto nel mio libro una spiegazione del calcolo combinatorio(permutazione con ripetizione) che mi ha lasciato qualche dubbio, ora ve la mostro: Permutazioni con ripetizione: sono permutazioni di n oggetti di cui k uguali: $P_(n,k)^(rip)= (n!)/(k!)$ poi segue un piccolo esercizio riassuntivo di quella formula: Quanti anagrammi(anche senza significato[size=150](1)[/size]) si ottengono con le lettere della parola CANNONE? si tratta di 7 oggetti di cui 3 uguali(le tre N) quindi: ...
2
4 ago 2017, 17:16

simonsays92
So che quando i gradi di libertà di una chi quadrato o una t di student sono >30 posso usare la tavola della normale standard per trovare quartili e probabilità. Ad esempio mi viene chiesto di trovare, per una variabile t di student con gradi di libertà pari a 200 il valore di t tale che l'area a destra valga a=0,05. Ora, con la tavola della t si trova agevolmente che questo valore di t è 1,645. Il problema è che non so proprio come usare la tavola della normale per trovare lo stesso valore; ...
5
28 lug 2017, 18:18

Johnny 97
Salve a tutti. Avrei dei problemi proposti come esercitazione e sono bloccato su quattro di essi. Inizierò chiedendovi aiuto per il primo Se poteste farmi vedere l'intero procedimento che seguite per risolverlo mi fareste un grandissimo favore Un punto materiale, di massa M = 3 kg, è lanciato, con velocità iniziale V[size=50]0[/size] = 15 m/s, su una guida a forma di U, composta da due tratti rettilinei privi d'attrito, e da una semicircolare di raggio R = 50 cm, anch'essa priva ...

borto97
Ciao, ho un problema con questo esercizio. Sia $f: \mathbb{R}^2 \to mathbb{R}$ la seguente funzione: $f(x,y) = x^{2}y^{2}sin(\frac{1}{xy})$ se $xy \ne 0$ e 0 se $xy = 0$. Provare che $f$ è differenziabile in ogni punto di $\mathbb{R}^{2}$ ma non è di classe $C^{1}(\mathbb{R}^2)$. Dunque, per vedere se $f$ è differenziabile in un punto dovrei calcolare le derivate parziali, vedere che in quel punto si annullano (quindi che il gradiente è 0) e fare il test della differenziabilità, cioè ...
7
31 lug 2017, 21:57

Leo S.
Ciao a tutti, ieri ho incontrato il concetto di topologia quoziente e ho alcuni dubbi sulla notazione e sul significato. Se quanto posto è corretto, aggiungerò in seguito alcuni esempi che mi lasciano perplesso. Comincio riportando le definizioni come vengono presentate dalla dispensa che seguo. Def Sia $f:XrarrY$ un'applicazione suriettiva da uno spazio topologico $X$ su un insieme $Y$. La topologia più fine su $Y$ che rende ...
11
3 ago 2017, 13:03

Borto1
Ciao a tutti, sto risolvendo degli esercizi sulle serie e per alcuni invece di utilizzare i criteri per la convergenza ho preferito utilizzare delle stime fatte attraverso delle disuguaglianze. Il mio dubbio è: come faccio a capire se le stime che faccio sono precise? Vi faccio un esempio: i) Voglio studiare la convergenza della serie $\sum_{n=2}^{\infty} \frac{1}{(logn!)^{\alpha}}$. Io l'ho risolto così: so che $n! \le n^n$, allora anche $logn! \le logn^n = nlogn$ e poi $nlogn \le n\sqrt{n}$. Ma allora $\frac{1}{(logn!)} \ge \frac{1}{(nlogn)} \ge \frac{1}{(n\sqrt{n})} = \frac{1}{n^{3/2}}$. Quindi ...
4
2 ago 2017, 17:50

rsist
Salve ho un problema con l' esercizio : Assegnata la funzione: $f(x,y)=\frac{x^a}{logx^b}$ dire per quale a reale e b strettamente positivo essa è integrabile in [1,+∞) grazie .
5
31 lug 2017, 08:24

cucinolu951
Scusate ancora. Mi è sorto un dubbio mentre cercavo di risolvere un problema nel quale mi si chiede di calcolare la differenza di potenziale tra due conduttori. sbaglierò sicuramente qualche ragionamento sulle convenzioni. La differenza di potenziale è uguale all'inverso dell'integrale di E*ds. Come faccio a stabilire il segno della differenza di potenziale? So che dipende anche dal lavoro ma non riesco a collegare le cose Grazie in anticipo

Leo S.
Ciao a tutti, vorrei una conferma sulla bontà di questa dimostrazione del lemma d'incollamento (le mie dispense non la danno). Riporto l'enunciato per completezza: Lemma Sia $X$ uno spazio topologico e $A$, $B$ due sottoinsiemi chiusi di $X$ tali che $A uu B = X$; siano $f:ArarrZ$ e $g:BrarrZ$ due mappe continue tali che $f(x)=g(x)$ se $x inAnnB$; allora la mappa $h(x):XrarrZ$ definita ...
2
4 ago 2017, 15:14

koloko
[size=85][16/02/16][/size] Salve, volevo sapere se il seguente procedimento è corretto, purtroppo non ho modo di verificarlo con ...
4
28 lug 2017, 16:00

LoreVa1
$tg(3/2*\pi -x) = 1-ctg(\pi/4 +x) $ Come posso risolverla? Io so che se a secondo membro ci fosse stata un'altra tangente, avrei semplicemente uguagliato le due parentesi (salvo dovuto condizioni!). Però in questo caso ho una cotangente e in più un uno fuori dalle parentesi! Come posso trasformarla considerando la relazione $ctgx= (1)/(tgx)$ ??
8
4 ago 2017, 10:30

fabry881
Ciao, qualcuno può aiutarmi con questo esercizio? Applicando il teorema di Lagrange a $f(x)=logx$ nell'intervallo $[e, e^((n+1)/n)], n>=2, n in NN$, dedurre che $((n+1)/n)^n<=e<=(n/(n-1))^n forall n>=2$. f(x) è continua in $[e, e^((n+1)/n)]$ e derivabile in $(e, e^((n+1)/n))$, quindi $exists c in [e, e^((n+1)/n)]$ tale che $(log(e^((n+1)/n))-log e)/(e^((n+1)/n)-e)=f'(c) Leftrightarrow (((n+1)/n)-1)/(e^((n+1)/n)-e)=f'(c)$ cosa posso fare per ricavare la disuguaglianza richiesta?
3
3 ago 2017, 18:44

marco.ve1
Ciao a tutti, vi sembra corretta questa dimostrazione? Mostrare che una qualsiasi matrice quadrata A di ordine n invertibile a coefficienti nel campo C è la matrice associata all'applicazione identica $C^n \to C^n$ rispetto a opportune basi $V, V'$ di $C^n$. Dim. Si può prendere $V$ uguale alle base canonica e $V' = \{v_1,..., v_n\}$ dove $v_i = \sum_{1 \le j \le n}(a_{ji} e_j)$ con $1 \le i \le n$ (che è una base poiché A è invertibile e quindi le sue colonne generano ...

mklplo751
Salve,tempo fa feci una domanda su come ottenere un funzionale,partendo dal primo membro dell'equazione di Euler-lagrange associata.Inizialmente però posi male la domanda,non conoscendo la differenza tra le equazioni di E-L e la variazione prima.E quindi mi dissero che se volevo ricavarmi un funzionale partendo dalla sua variazione prima avrei dovuto generalizzare il concetto di integrale di linea al caso infinito-dimensionale(il link del topic è ...
18
20 lug 2017, 18:29

Plinio78
Perché se un insieme ha misura nulla secondo Jordan allora ha misura nulla anche secondo Lebesgue?
10
1 ago 2017, 08:09

otta96
Tempo fa stavo cercando di dimostrare una cosa che aveva detto il nostro prof di analisi, ma non ci sono riuscito, per questo ora vi chiedo un aiuto: dimostrare che data una funzione $f:(a,b)->RR,x_0\in(a,b)$ se la funzione è analitica in $x_0$, allora è analitica anche in tutti i punti di un intorno di $x_0$.
16
23 lug 2017, 11:52

elizabeth_monroe1
Buongiorno a tutti Vorrei avere una mano nella risoluzione di questi test a crocette, purtroppo il mio professore di probabilità era un cane e ora mi trovo in seria difficoltà Si lancia un dado equilibrato numerato da 1 a 6 per sei volte. Si considerino le variabili Xk che valgono 1 se esce i al lancio i-esimo e 0 altrimenti. Dire quale delle seguenti affermazioni è falsa: 1)$E[ Sigma X_k]=1$ 2)$E[X_k-X_j]=0$; $AAk,j$ 3)$Var[ Sigma X_k]= 5/6 $ 4)$P[ Sigma X_k=5]= 5/6*(1/6)^5 $ (La risposta ...

mklplo751
Salve,vi sarei molto grato se qualcuno potesse aiutarmi a esprimere esplicitamente la soluzione di questa PDE(con "esprimere esplicitamente la soluzione " intendo:individuare esplicitamente o come somma di una serie di funzioni oppure come un integrale la soluzione).La PDE che non mi da pace è questa: \( y'(x)\frac{\partial^2 f(y(x),y'(x))}{(\partial y(x))^2}-(y'(x)+y''(x))\frac{\partial^2 f(y(x),y'(x))}{\partial y(x)\partial y'(x)}-\frac{\partial f(y(x),y'(x))}{\partial y(x)}=f(y(x),y'(x)) ...
10
19 lug 2017, 19:45

NerdMind
Salve, ho un problema che dice: "Calcolare l'equazione dell'ellisse passante per i punti P1 = \(\displaystyle {\sqrt{3}},{\sqrt{\frac{8}{3}}} \) e P2 = \(\displaystyle 1, {\sqrt{\frac{32}{9}}} \) Ora, con l'equazione dell'ellisse \(\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) ho impostato il seguente sistema: \(\displaystyle \left\{\begin{matrix} \frac{3}{a^{2}}+\frac{8}{3b^{2}}=1 \\ \\ \frac{1}{a^{2}}+\frac{32}{9b^{2}}=1 \\ \end{matrix}\right. \) Utilizzando il metodo di ...
5
3 ago 2017, 15:52

Mynameis1
Buongiorno , oggi propongo un esercizio che mi sta creando perplessità . " Nel sistema mostrato in figura sono noti la massa $ m $ del blocco quella $ M $ del cuneo e l'angolo $ alpha $ del cuneo . Trovare l'accelerazione del cuneo $ A $ supponendo di trascurare sia la massa del filo che quella della carrucola ( che è posta in cima al cuneo ) . Tutti gli attriti sono trascurabili ." Cerco di spiegarvi il sistema perché ho qualche problema ad usare il ...