Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Ciao a tutti,
ho una domanda stupida da chiedere a qualcuno perché non ho capito una notazione: quella di $C^oo$ per funzioni tipo $R^n -> R^m$ più che altro solo per essere generico ma anche $R^n -> R$.
Insomma il dubbio:
leggo su internet che la funzione si dice $C^k$ se è derivabile k volte con continuità (cioè ho tutte le k derivate continue).
Tuttavia sto studiando le funzioni $R^n -> R$ e so che derivabilità non implica differenziabilità e ...
Sia data la seguente forma $dx+zdy-ydz=0$, determinare $\mu!=0$ tale che $\mu(dx+zdy-ydz)=0$ sia esatta.
Affinchè sia esatta deve valere in particolare in questo caso che $(\del (\muz))/(del z)=-(\del (\muy))/(del y)$ (le altre uguaglianze sono banalmente verificate). Ma allora si deve avere $(\del \mu)/(del y)y+(\del \mu)/(del z)z=-2 \mu$. Ora da qui come posso ricavare $\mu$? Io intuitivamente ho pensato ad $1/(yz)$, ma cè un processo per determinarlo formalmente?.
Buongiorno, ho il seguente dubbio, considero
$x^t=(x_1,...,x_n)$ il vettore delle componenti di un vettore $v$ in un riferimento $B=(v_1,...,v_n)$
$y^t=(y_1,...,y_m)$ il vettore delle componenti di un vettore $u$ in un riferimento $B'=(w_1,...,w_m)$
$A=(a_(i,j))$ matrice compatibile con prodotto righe per colonne.
Perché se
\(\displaystyle y^t\begin{bmatrix} w_1 \\\vdots \\ w_m\end{bmatrix} =x^tA^t\begin{bmatrix} w_1 \\\vdots \\ w_m\end{bmatrix}\),
allora ...
Sia $A={0<=x<=1, 0<=y<=e^(-x)sqrtx}$ e sia $V$ il solido generato dalla rotazione di $A$ intorno all'asse x. Determina il volume di $V$.
Salve, ho difficoltà in questo caso a determinare l'intervallo di esistenza della variabile z. Potete darmi dei suggerimenti?
Scusate se posto uno screenshot ma data la natura dell'esercizio non so come fare altrimenti.
Devo disegnare il grafico di $f(x)$ tenuto conto che quello della sua derivata è quello rappresentato in figura e che $f(0)=0$.
Poiché $f(0)=0$ e la sua derivata mi sembra una parabola con concavità verso il basso per $x<0$ e con concavità verso l'alto per $x>0$, credo che la funzione di partenza sia una cubica, con una ...
Dato il seguente problema
si ha che la trasformazione è canonica in quanto preserva le parentesi di Poisson. Ora dobbiamo trovare la funzione generatrice di tale trasformazione, $f_1(t,q,p,Q,P)$, di cui sappiamo che $(del f_1)/(del p)=0, (del f_1)/(del P)=0, (del f_1)/(del q)=p, (del f_1)/(del Q)=-P$, da questo pensavo di ricavarmi $f_1$ però ho provato a fare qualche calcolo e non mi riesce, qualcuno sa dirmi?
Trovare l'integrale generale della seguente equazione differenziale in più variabili:
$\{(\ddot x-2 \omega_0 \dot y=0),(\ddoty+2 \omega_0 \dot x=0):}$
dove $\omega_0$ è una costante.
Dalla prima equazione mi sono ricavato che $\dot y= (\ddot x)/(2 \omega_0)$ da cui $\ddot y= (x^((3)))/(2 \omega_0)$ e quidni sostituendo alla seconda equazione ottengo $(x^((3)))/(2 \omega_0)+2 \omega_0 \dot x=0$, ora per risolvere quest'ultima equazione differenziale di terzo ordine devo procedere come nel caso di equazioni differenziali di secondo ordine, quindi considerando l equazione caratteristica e ...
Sia a un numero reale e sia $y_a(x)$ la soluzione del seguente problema di Cauchy: $y'=e^(-x^2)siny$, $y(0)=a$. Prova che per $a=-π/2$ la soluzione è definita e strettamente decrescente.
Buonasera a tutti, sto avendo particolare difficoltà a risolvere questo esercizio. Innanzitutto non riesco a risolvere l'equazione differenziale perché l'integrale di $e^(-x^2)$ non è una funzione elementare. Inoltre non ho mai risolto esercizi dove studiare la monotonia della ...
Sia S la superficie ottenuta ruotando attorno all'asse z il grafico della funzione:
$ x=1-sqrt(1-z^2) , zin[-1,1] $
A) Determinare una rappresentazione parametrica di S
B) Calcolare l'area di S
L'esercizio è stato svolto in due modi:
1°modo : utilizzando le coordinate cartesiane
2°modo : utilizzando le coordinate cilindriche
Problema: mi aspettavo che l'area calcolata nei due modi fosse la stessa , invece no.
Domanda: ho sbagliato qualcosa?
[1°modo]
$r(t)=((1-sqrt(1-t^2)),0,t), tin[-1,1] $
$r(t,theta)=((1-sqrt(1-t^2))costheta, (1-sqrt(1-t^2))sintheta, t) , tin[-1,1],thetain[0,2pi)$
...
Buonasera,
sto seguendo un corso di geometria base e non ho capito il discorso fatto dal prof, in particolare ha inizialmente detto che parlare di differenziabilità per una funzione con dominio su una intersezione (quindi sottoinsieme) della superficie immersa in R^3 non ha senso in quanto un qualcosa di "simil-bidimensionale" e sicuramente non è un aperto di R^3. Non ha quindi senso (non avendo un aperto) parlare di differenziabilità. E ha introdotto discorsivamente questo concetto (il succo ...
Ciao a tutti,
potreste dirmi se questo esercizio è svolto correttamente, per favore?
Ho un insieme $A$ costituito da un solo numero $<= 0$
Ed un insieme $B = {n in N | n/ (n^2 + 4)}$
Mi viene chiesto di determinare il solo numero dell'insieme $A$ affinchè i due insiemi siano contigui.
$ N= {0,1,2,3...}$.
Di conseguenza sostituendo 0 ad n nell'insieme B ottengo l'estremo inferiore e il minimo di B. Poichè A è costituito da un solo elemento e questo può essere ...
Buonasera menti matematiche, mi domando se alcuni sottoinsiemi di matrici in $GL_n(\mathbb{R})$ siano aperti o chiusi (o nessuno dei due, o entrambi...). Per esempio, se chiamiamo $M(W,Z)$ l'insieme
\[
\{A\in GL_n(\mathbb{R})| AW=Z\}
\]
Questo è aperto? chiuso? (onestamente io spero sia chiuso, perché mi sarebbe comodo)
Naturalmente ci interessa il caso non banale, cioè quello in cui $k=dim(W)=dim(Z)<n$.
Ho provato a definire la mappa
\[
f:GL_n(\mathbb{R})\rightarrow Gr(k,n)\\
A\mapsto ...
Buongiorno.
Mi trovo in difficoltà con un esercizio di un tema d'esame universitario.
Scrivo di seguito la consegna.
Sia (.,.)il prodotto scalare euclideo in R3 e sia (.,.)A definito da
(x,y)A=(x,yA) dove A è una matrice 3x3 , verificare se (.,.) sia p.s.e ed in caso positivo computare angolo tra v ed u rispetto a (.,.) dove u=(1,1,2) e v=(1,-1,1).
La matrice A --> r1(1,0,0) / r2(0,2,1) / r3( 0,1,2)
non capisco cosa richiede l'esercizio nello specifico, soprattutto la parte dove ...
Dato il seguente problema:
siccome è un equazione a derivate parziali lineare allora il vincolo è olonomo, osserviamo che la forma differenziale corrispondente $cos(y)dx+sin(x) dy=0$. ma essa non è esatta, perciò cerchiamo $\mu$ tale che $(del (\mu cos(y)))/(del y)=(del (\mu sin(x)))/(del x)$, ovvero $(del \mu)/(del y)cos(y)-(del \mu)/(del x)sin(x)=\mu(cos(x)+sin(y))$, perciò $-dx/sin(x)=dy/cos(y)=(d \mu)/(\mu(cos(x)+sin(y)))$, sclego come variabile indipendete $dx$, allora $\int -dx/sin(x)=\int dy/cos(y)$ e $\int dy/cos(y)=\int (d \mu)/(\mu(cos(x)+sin(y)))$, da cui vorrei ricavare i due integrali primi e da essi poi ...
Salve a tutti, volevo sapere se la formula di eulero fosse valida anche nel tempo discreto.
Ho $X(\nu)=1/2(e^(-j2pi3\nu)+e^(j2pi3\nu))$
Posso scrivere direttamente $X(\nu)=cos(2pi3\nu)$?
Grazie in anticipo!
Sia $F$ un campo $E$ una sua estensione, sia $E=F[alpha_1,alpha_2,......alpha_(n-1)]$ il più piccolo campo che contiene $(alpha_1,alpha_2,...alpha_n)$ elementi algebrici su $F$, allora $E$ risulterà essere campo di spezzamento del polinomio $p(x)=(x-alpha_1)(x-alpha_2).....(x-alpha_n)$ che risulterà irriducibile e quindi polinomio minimo di ogni radice. È sbagliato?
Dato il seguente problema:
ho pensato di fare così:
Sia $alpha$ l'angolo tra la sbarra e la molla, allora posto $G=(x_G,y_G)$ e $omega=(0,0, \dot \alpha$) si ha che $x_G=lcos(alpha)$ e $y_G=lsin(alpha)$. La lagrangiana è uguale a $L=T+U$ dove $T=1/2mv_G^2+T_G$ e $U=-mgy_G-k/2x_G^2$, si ah che $v_G=\dot x_G^2+\dot y_G^2=l^2 \dot \alpha^2$, $T_G=omega^2/2I_r=\dot \alpha^2/2I_z=(\dot \alpha^2mR^2)/4$, per cui $L=(ml^2 \dot \alpha^2)/2+(\dot \alpha^2mR^2)/4-mglsin(alpha)-k/2l^2cos^2(alpha)$ e poi per l equazione di lagrange basta scrivere $d/dt((del L)/(del \dot alpha))-(del L)/(del alpha)=0$.
L'Hamiltoniana è uguale a ...
Si supponga che la funzione di domanda della Honda Accord sia $Q^d = 430-10P_A + 10P_C-10P_G$, dove $P_A$ e $P_C$ rappresentano, rispettivamente, il prezzo della Honda Accord e della Toyota Camry (in migliaia) e $P_G$ è il prezzo della benzina (in galloni). Qual è l'elasticità della domanda della Accord rispetto al prezzo della Camry quando il prezzo di entrambe le auto è $20000$ e il costo del carburante è $3$ al gallone?
Da $Q^d= 430-10P_A + 10P_C - 10P_G$, ...
Stavo ripassando il concetto di elasticità e mi è tornato un dubbio che non ho mai risolto: perché, nei grafici, la variabile indipendente (il prezzo) viene rappresentata sull'asse verticale? Personalmente è qualcosa che mi confonde soltanto, perché ad esempio se si vuole calcolare l'elasticità di una curva di domanda in un punto utilizzando questa formula $e = 1/((\Delta P)/(\Delta Q)) * P/Q$ non si può derivare rispetto al prezzo, ma rispetto alla quantità, cosa non intuitiva siccome di solito ...