Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza

Ciao, ho un dubbio come da titolo per un esempio fatto dal prof.
La situazione è la seguente:
siano le funzioni
$phi(u,v):(u,v)->(x(u,v),y(u,v),z(u,v))$
e
$p(x,y):(x,y)->(u(x,y),v(x,y))$
dice che componendole trovo: $phi(x, y) = (x, y, z(x, y))$
Le mie domande sono di base, due:
1) mi confonde il seguente ragionamento, io so dalla prima che x dipende da u e v, e y anche, cioe: $ x(u,v),y(u,v)$ quindi potrei scrivere che $p(x(u,v),y(u,v))$, cioè $(x,y)->(u(x(u,v),y(u,v)),z(x(u,v),y(u,v)))$
quindi quando compongo come primo termine (ma per gli altri similmente) mi ...

Si consideri una carica all'origine del sistema di riferimento, un'altra a distanza L dall'origine e una terza a 2L dall'origine. Le 3 cariche vengono portate ai vertici di un triangolo equilatero.
Calcolarne il lato del triangolo affinchè il lavoro compiuto contro le forze del campo elettrico per portare il sistema dalla configurazione iniziale a quella finale sia 4 J
io l'ho svolto così:
sappiamo che il lavoro L=q*V=kqQ/r.
la prima carica viene portata al suo posto senza lavoro, quindi ...
Ho un po' di difficoltà con la dimostrazione di questa proposizione.
Ogni isometria inversa di $E_2$ (spazio affine euclideo) priva di punti uniti (si dice che $P$ è un punto unito per l'affinità $phi$ se $phi(P)=P$) è una glissoriflessione.
Dimostrazione
Sia $phi:E_2->E_2$ un'isometria inversa priva di punti uniti.
Sia $R(O,B)$ riferimento cartesiano.
L'isometria $phi$ ha equazione $phi:X'=AX+b$ con ...

È dato un filo rettilineo indefinito uniformemente carico con densità lineare $ λ= h*10^-9 C/m $ . Il potenziale elettrico in un punto P_0 a distanza R dal filo vale: V_p0 = 150 V . Calcolare il potenziale elettrico in un punto P a distanza L dal filo.
Sappiamo che il potenziale elettrico generato da un filo carico infinito è V = (λ/2πε) * ln(R/r), da cui ricavo $ r = R / e^((2πεV_{p_0})/λ) $ . quindi il risultato è V_p = (λ/2πε) * ln(L/r)
è giusto?
Stavo studiando le isometrie di spazi affini euclidei $E_n$ ovvero affinità la cui parte lineare è un'isometria lineare (o trasformazione ortogonale).
Mi si portano alcuni esempi di isometrie come casi particolari di affinità inerenti a spazi affini $A_n$.
Ad esempio le traslazioni $tau$ hanno come parte lineare l'applicazione identità $i_V$ che è una isometria lineare.
La simmetria $sigma_C$ di centro $C$ perché ha come ...

Ciao a tutti,
sottopongo questo esercizio che mi mette in difficoltà.
Devo esprimere in serie di Laurent, nell'intorno di $z=0$ e del punto infinito la seguente funzione:
$f(z)= sinz/(z(z^2+1)$
Nell'intorno di $z=0$ ho espresso $sinz$ come sviluppo in serie e $1/(z^2+1)$ come serie geometrica ottenendo:
$\sum_{n=0}^\infty\(-1)^n/((2n+1)!)*z^(2n+1)*\sum_{n=0}^\infty\(-1)^n*z^(2n-1)$
Ho applicato la formula di Cauchy per il prodotto tra serie ma mi risulta una serie che non riesco a gestire e che comunque è lontano ...
Sia $y(x)$ la soluzione di $y''(x)+e^(x^2)y(x)=0$, con $y(0)=1$ e $y'(0)=0$.
a) Prova che $y(x)=y(-x)$;
b) prova che $abs(y(x))<=1$, per ogni $x$ appartenente ad $R$.
Buongiorno e buona domenica a tutti. Ho pensato di provare il punto a) scrivendo che $y''(x)+e^(x^2)y(x)=y''(-x)+e^((-x)^2)y(-x)=-y''(x)+e^(x^2)*-y(x)=y''(x)+e^(x^2)y(x)$. Va bene o è necessario fare dei passaggi preliminari?
Per il punto b) sinceramente non ho idea di come fare... Avete dei suggerimenti da darmi?
Salve
Nel bel libro di David Acherson "Viaggio nel calcolo infinitesimale" viene ricordato un risultato già noto ad Archimede, ossia il fatto che si taglia una pagnotta sferica in fette di ugual spessore le loro superfici (la crosta) è uguale fra di loro.
Mi piacerebbe sapere la dimostrazione e chi fu a scoprirla.

Ciao a tutti! Ho avuto difficoltà a svolgere i seguenti due esercizi. Qualcuno potrebbe aiutarmi?
ESERCIZIO 1
Sia
A=(-a b
c d)
Si consideri l'applicazione la:Q2,2->Q2,2 definita nel seguente modo
la(X)=AX-XA, XappartenteQ2,2.
Si mostri che la è una applicazione lineare e si determini al variare di A, im(la) e ker(lA).
ESERCIZIO 2
Sia v = V / R uno spazio vettoriale sui reali, \mathcal{R} = \{e_{1}, e_{2}, e_{3}\} un suo riferimento ed f / V -> V l'endomorfismo di V tale che f(e 1 ...

Salve a tutti, sto studiando la condizione di Cauchy in merito alle successioni.
Mi pare di aver capito che in uno spazio metrico reale dotato della metrica euclidea affermare che una successione converge equivale ad affermare che essa soddisfa la condizione di Cauchy.
Di conseguenza, una successione irregolare o divergente, sempre nello spazio metrico reale euclideo, non soddisfa la condizione di Cauchy.
Se considero uno spazio metrico dotato di una metrica non euclidea, come ad esempio la ...
Testo: data la superficie di equazione $z(u,v)=sqrt(16-u^2-v^2),(u,v)inOmega$
con $Omega:={(u,v)inR^2|u<=0,v>=0, u^2+v^2<=16, u^2/4+v^2>=y}$
Calcolare: $int_S z(y-2x)dS$
Non mi torna quella y nel dominio della superficie.
Mi sarei aspettato un $u^2/4+v^2>=1$ e quindi una regione calcolata a partire da una curva: Ellisse.
Ma con nel caso di $u^2/4+v^2>=y$ credo ci sia un errore nel testo.
Confermate?
Buonasera a tutti, ho un problema che non riesco a terminare per miei dubbi e ignoranza.
Ho una funzione $f(x, y)$ differenziabile ma ignota, di cui so che $f(9/10, 1/10) = 3$, $f'_x(9/10, 1/10) = 1$, $f'_y(9/10, 1/10) = -2$.
L'esercizio chiede: "usando la migliore approssimazione lineare di $f$ attorno al punto $(9/10, 1/10)$, calcolare un valore approssimato di $f(1, 0)$. Supponendo poi che $f$ sia strettamente concava, determinare se il valore reale di ...
Buonasera a tutti. Ho provato a calcolare senza riuscire a trovarmi con il risultato corretto il volume della regione interna al cilindro di equazione $x^2+y^2<=4$ e compresa tra i piani $z=x-1$ e $z=1-x$. Ho provato a calcolare l'integrale comprendendo l'asse Z tra i due piani, oppure dividendo l'integrale calcolandolo prima in un piano e poi per l'altro, senza riuscire ad ottenere $12sqrt3+8/3π$, il risultato corretto. Mi potete aiutare?
Ammetto di non avere molta ...

Ciao a tutti,
ho una domanda stupida da chiedere a qualcuno perché non ho capito una notazione: quella di $C^oo$ per funzioni tipo $R^n -> R^m$ più che altro solo per essere generico ma anche $R^n -> R$.
Insomma il dubbio:
leggo su internet che la funzione si dice $C^k$ se è derivabile k volte con continuità (cioè ho tutte le k derivate continue).
Tuttavia sto studiando le funzioni $R^n -> R$ e so che derivabilità non implica differenziabilità e ...
Sia data la seguente forma $dx+zdy-ydz=0$, determinare $\mu!=0$ tale che $\mu(dx+zdy-ydz)=0$ sia esatta.
Affinchè sia esatta deve valere in particolare in questo caso che $(\del (\muz))/(del z)=-(\del (\muy))/(del y)$ (le altre uguaglianze sono banalmente verificate). Ma allora si deve avere $(\del \mu)/(del y)y+(\del \mu)/(del z)z=-2 \mu$. Ora da qui come posso ricavare $\mu$? Io intuitivamente ho pensato ad $1/(yz)$, ma cè un processo per determinarlo formalmente?.

Buongiorno, ho il seguente dubbio, considero
$x^t=(x_1,...,x_n)$ il vettore delle componenti di un vettore $v$ in un riferimento $B=(v_1,...,v_n)$
$y^t=(y_1,...,y_m)$ il vettore delle componenti di un vettore $u$ in un riferimento $B'=(w_1,...,w_m)$
$A=(a_(i,j))$ matrice compatibile con prodotto righe per colonne.
Perché se
\(\displaystyle y^t\begin{bmatrix} w_1 \\\vdots \\ w_m\end{bmatrix} =x^tA^t\begin{bmatrix} w_1 \\\vdots \\ w_m\end{bmatrix}\),
allora ...
Sia $A={0<=x<=1, 0<=y<=e^(-x)sqrtx}$ e sia $V$ il solido generato dalla rotazione di $A$ intorno all'asse x. Determina il volume di $V$.
Salve, ho difficoltà in questo caso a determinare l'intervallo di esistenza della variabile z. Potete darmi dei suggerimenti?
Scusate se posto uno screenshot ma data la natura dell'esercizio non so come fare altrimenti.
Devo disegnare il grafico di $f(x)$ tenuto conto che quello della sua derivata è quello rappresentato in figura e che $f(0)=0$.
Poiché $f(0)=0$ e la sua derivata mi sembra una parabola con concavità verso il basso per $x<0$ e con concavità verso l'alto per $x>0$, credo che la funzione di partenza sia una cubica, con una ...
Dato il seguente problema
si ha che la trasformazione è canonica in quanto preserva le parentesi di Poisson. Ora dobbiamo trovare la funzione generatrice di tale trasformazione, $f_1(t,q,p,Q,P)$, di cui sappiamo che $(del f_1)/(del p)=0, (del f_1)/(del P)=0, (del f_1)/(del q)=p, (del f_1)/(del Q)=-P$, da questo pensavo di ricavarmi $f_1$ però ho provato a fare qualche calcolo e non mi riesce, qualcuno sa dirmi?