Università
Discussioni su temi che riguardano Università della categoria Matematicamente
Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Analisi Numerica e Ricerca Operativa
Discussioni su Analisi Numerica e Ricerca Operativa
Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Fisica, Fisica Matematica, Fisica applicata, Astronomia
Discussioni su argomenti di Fisica, Fisica Matematica, Astronomia e applicazioni della Fisica
Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Informatica
Discussioni su argomenti di Informatica
Ingegneria
Discussioni su tematiche di ingegneria che non trovano collocazione specifica negli altri forum
Matematica per l'Economia e per le Scienze Naturali
Discussioni su argomenti di matematica per le scienze economiche e finanziarie, la teoria dei giochi, e per le scienze naturali
Pensare un po' di più
Spazio dedicato a problemi che vanno al di là dei semplici temi d'esame o degli esercizi standard.
Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza
Ciao a tutti,
Sto ripassando Analisi, e svolgendo il seguente esercizio, che mi son proposto da me:
Data la funzione
\(\displaystyle
f(x) = {5 \over ^3\sqrt{(x)^4}}
\)
Dimostrare che:
\(\displaystyle
{\mathrm{d}f(x) \over \mathrm{d} x} = -{20 \over 3} x^{-7/3}
\)
Procedo con lo svogimento:
\(\displaystyle
\begin{aligned}
& \lim_{\Delta x \to 0} \, {{5 \over ^3\sqrt{(x + \Delta x)^4}} - {5 \over ^3\sqrt{(x)^4}} \over \Delta x}\\
& \lim_{\Delta x \to 0} \, {{\left( ...
$f=x^4-5x^2+6 in Q[x]$
allora
$f=(x^2-2)(x^2-3)$
Il campo di spezzamento di questo polinomio è $F=Q(sqrt2,sqrt3)$ ottenuto con l'aggiunta delle radici reali $sqrt2,sqrt3$, la cui Q-base è ${1,sqrt2,sqrt3,sqrt6}$
(*)
$Gal(F$ $/K)=(F:Q)=4$ ed $F={a_1+a_2sqrt2+a_3sqrt3+a_4sqrt6 : a_i in Q}$ quindi $Gal(F$ $/K)~=V_4$
Posso trovare una torre radicale?
$F_1= Q(sqrt3)$
$F_2= F_1(sqrt2)$
$Q=F_0<= F_1<=F_2$
$(sqrt3)^2=3 in Q$
$(sqrt2)^2=2 in F_1$
Se considero tutti i possibili automorfismi di ...
Ciao a tutti!
Credo che questa sia la sezione più adatta per questo quesito.
Sia $K$ un campo, non necessariamente algebricamente chiuso. Sia $f:W->V$ un morfismo dominante di varietà ($K$-schemi di tipo finito) la cui fibra generica è geometricamente irriducibile. Sia poi $Y$ un'altra varietà (irriducibile) di dimensione uguale a $V$ e $\pi : Y -> V$ un morfismo dominante di grado almeno 2. Non riesco a dimostrare che ...
Ciao ragazzi,
mi trovo alle prese con un esercizio per il quale sono bloccato, l'esercizio è questo:
E' vero o no che per ogni $n \in ZZ$ il numero $a_n:=n^9+2n^7+3n^3+4n$ è divisibile per 5?
io ho abbozzato una soluzione di questo tipo:
per $n=0$ ottengo che $0$ è divisibile per $5$
poi se lo suppongo vero per $n$ e lo voglio provare per $n+1$ ottengo $(n+1)^9+2(n+1)^7+3(n+1)^3+4(n+1)$
a questo punto non so come continuare, ho pensato che ...
Il mio libro accenna il seguente teorema:
Se una funzione è monotòna e continua in un'intervallo allora anche la sua inversa è continua.
Dice che si dimostra tale teorema, ma non trovo niente in giro sul web che parli di questo teorema ed ovviamente nulla riguardo alla dimostrazione.
Il teorema dei valori intermedi per una funzione $f$ dice che la funzione deve essere continua, ma questo per deduzione o perché la dimostrazione sfrutta il teorema degli zeri in cui la funzione ...
Qualcuno conosce il significato di questo simbolo? $\odot$
Ho il seguente esercizio:
Non riesco a capire che valore da a quelle $n^-$ ed $n^+$ per calcolare i limiti:
$f(n^-)=lim_(x->n^-) f(x) = 1$
$f(n^+)=lim_(x->n^+) f(x) = 0$
Ma che valore da a queste $n^-$ ed $n^+$ per poi calcolare i limiti????
Buongiorno.
Premetto che la mia preparazione in probabilità è deboluccia, ma mi trovo a dover usare alcuni strumenti in altri ambiti della matematica.
Il mio problema, forse assolutamente banale, è il seguente. Mi chiedo se esiste una distribuzione di probabilità $\mathcal{D}$ con la seguente proprietà: se $X,Y$ sono variabili aleatorie con distribuzione $\mathcal{D}$ allora il prodotto $XY$ ha distribuzione $N(0,1)$.
Più in generale, fissato un ...
Nella seguente:
Ma che significato ha quella U grande???
E poi mi chiedo cosa significa $d(x,y)$ in questa?
ieri ne discutevo con un amico, di solito la definizione che si da di "palla aperta rispetto ad \(f\) di centro \(c\) e raggio \(r \)" è la seguente:
Def. 1: siano dati \((a,f)\) uno spazio metrico, \(c \in a\) ed \( r \in \Bbb{R}_{>0}\), dicesi "palla aperta rispetto ad \(f\) di centro \(c\) e raggio \(r \)" l'insieme $$\mathcal{B}_f(c,r[\;=\{x|x \in a \wedge f((c,x))0}\)?, prendiamo il caso per un ...
Ragazzi è giusto definire la retta tangente come la miglior retta che approssima una curva.
cioè considerando una curva formata da infiniti punti e la distanza tra un punto e il successivo e infinitesima allora la retta tangente e quella retta che riesce a coprire due punti su tale curva. cioè la retta di miglior approssimazione
ciao a tutti!
sono incappato in un esercizio che non riesco a risolvere, potreste darmi una mano?
$ int int_(T)(x+y)/(1+x-y) dx dy $ dove T è il trapezio di vertici (1,1), (2,2), (4,0), (2,0)
allora, ho provato per un sacco di volte a farlo per parti integrando prima per y, ma sono convinto di sbagliare nella scelta degli estremi d'integrazione il che mi porta ad utilizzare più volte questa tecnica incasinandomi.
So che si potrebbe fare anche per sostituzione ponendo s=x+y e t=x-y ma mi incasino sempre nel ...
Ciao ragazzi!! sto implementando su matlab un metodo numerico per risolvere nel discreto il sistema di equazioni differenziali
$a_1' = -2k(a^2-ab)$
$a_2'= k(a^2-ab)$
$a_3'=k(a^2-ab)$
In particolare le incognite sono concentrazioni e la loro somma vale uno.
Implementando su matlab il metodo
$P*_{a1} = P_{a1} -2*mu*(( P_{a1}) ^2 -P_{a2} P_{a3])$
$P*_{a2} = P_{a2} +mu*( (P_{a1}) ^2 -P_{a2} P_{a3])$
$P*_{a3} = P_{a3} +mu*( (P_{a1} )^2 -P_{a2} P_{a3])$
Dopo un certo numero di iterazioni la somma dei $P^*_{ai}$ si scosta sempre di più da uno. Sono giunto quindi alla conclusione che sia il fenomo ...
Vorrei capire cosa ho sbagliato in questi esercizi e quali sono giusti:
1) una massa m=12.5kg deve essere calata con una fune (inestensibile, massa trascurabile) il cui carico di rottura è a 70N (ipotizzo io che si tratti della tensione massima prima che la corda si spezzi). Calcolare l'accelerazione minima con cui calare la massa senza che la corda si spezzi.
Io ho scritto l'equazione $mg-T=ma \Rightarrow a=(mg-T)/m=(12.5*9.8-70)/12.5=4.2m/s^2$
_________________________________________________________
2)una catena è trattenuta su un ...
...E un altro esercizio mi chiede di costruire un campo di ordine 27. Suggerimenti, grazie?
Rodolfo
Nel libro "Interpolationa and approximation" di P. J. Davis, più precisamente nel capitolo 7, si lavora in spazi vettoriali normati $V$ e si definisce, dati ${x_i}_{i=1}^n \subset V$ insieme di vettori linearmente indipendenti e $y \in V$, la migliore approssimazione di $y$ come combinazione lineare dei ${x_i}_{i=1}^n$ come quel vettore $\sum_{i=1}^n \alpha_i x_i$ che minimizza $||y- \sum_{i=1}^n \alpha_i x_i||$.
Si dimostra poi l'esistenza della migliore approssimazione (th. 7.4.1).
Poco ...
Salve a tutti,
Ho da proporvi un esercizio:
Un anello elastico di massa m, lunghezza L e costante elastica K viene teso intorno ad una ruota di raggio R (si ha L
Salve, mi è capitato davanti questo integrale improprio:
$ int_(0)^(1) (cos^2x)/root(5)(x^4-1) dx $ .
Studiando la funzione integranda $ f(x)=(cos^2x)/root(5)(x^4-1) $ nell'intervallo $ I=[0,1] $ , ho notato che essa è continua per $ AA x in I - (1) $ , ed è sempre negativa per $ AA x in I $ .
La questione che mi pongo è: in che modo vanno applicati i criteri di convergenza (in questo caso del confronto asintotico) quando ci troviamo davanti ad un integrale improprio del genere? Bisogna moltiplicare la funzione per ...
Non ho ben chiara la dimostrazione di tale teorema:
Ogni soluzione di $y'(t)=f(t,y(t))$ ha un unico prolungamento massimale
In pratica la dimostrazione che ho sul quaderno inizia così:
Sia y: I->$R^n$ una soluzione del nostro problema e sia poi P l'insieme di tutti i prolungamenti della soluzione y
Si definisce poi y1: I1->$R^n$ dove I1 è definito come l'unione di tutti gli intervalli dei prolungamenti
successivamente non capisco più cosa fa..
Non credo di aver capito bene l'argomento dei fluidi. Il testo del problema è:
Sospettiamo che una statuetta d'oro contenga al suo interno un metallo più leggero. Pesando la statuetta con un dinamometro otteniamo il valore di 20,0 N. Ripetendo la misura con la statuetta immersa in acqua registriamo una perdita di peso di 1,50 N. Dato che la densità dell'oro è $ 1,93 x 10^4 (kg)/m^3 $ e quella dell'acqua è $ 1,00 x 10^3 (kg)/m^3 $, vogliamo stabilire se il nostro sospetto è fondato.
Se con la statuetta ...